Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO)
- URL: http://arxiv.org/abs/2210.03151v1
- Date: Thu, 6 Oct 2022 18:23:42 GMT
- Title: Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO)
- Authors: Satrajit Chakrabarty, Syed Amaan Abidi, Mina Mousa, Mahati Mokkarala,
Isabelle Hren, Divya Yadav, Matthew Kelsey, Pamela LaMontagne, John Wood,
Michael Adams, Yuzhuo Su, Sherry Thorpe, Caroline Chung, Aristeidis Sotiras,
and Daniel S. Marcus
- Abstract summary: We propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-Oncology MRI data.
Our end-to-end framework i) classifies MRI sequences using an ensemble classifier, ii) preprocesses the data in a reproducible manner, and iv) delineates tumor tissue subtypes.
It is robust to missing sequences and adopts an expert-in-the-loop approach, where the segmentation results may be manually refined by radiologists.
- Score: 0.12175619840081271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efforts to utilize growing volumes of clinical imaging data to generate tumor
evaluations continue to require significant manual data wrangling owing to the
data heterogeneity. Here, we propose an artificial intelligence-based solution
for the aggregation and processing of multisequence neuro-oncology MRI data to
extract quantitative tumor measurements. Our end-to-end framework i) classifies
MRI sequences using an ensemble classifier, ii) preprocesses the data in a
reproducible manner, iii) delineates tumor tissue subtypes using convolutional
neural networks, and iv) extracts diverse radiomic features. Moreover, it is
robust to missing sequences and adopts an expert-in-the-loop approach, where
the segmentation results may be manually refined by radiologists. Following the
implementation of the framework in Docker containers, it was applied to two
retrospective glioma datasets collected from the Washington University School
of Medicine (WUSM; n = 384) and the M.D. Anderson Cancer Center (MDA; n = 30)
comprising preoperative MRI scans from patients with pathologically confirmed
gliomas. The scan-type classifier yielded an accuracy of over 99%, correctly
identifying sequences from 380/384 and 30/30 sessions from the WUSM and MDA
datasets, respectively. Segmentation performance was quantified using the Dice
Similarity Coefficient between the predicted and expert-refined tumor masks.
Mean Dice scores were 0.882 ($\pm$0.244) and 0.977 ($\pm$0.04) for whole tumor
segmentation for WUSM and MDA, respectively. This streamlined framework
automatically curated, processed, and segmented raw MRI data of patients with
varying grades of gliomas, enabling the curation of large-scale neuro-oncology
datasets and demonstrating a high potential for integration as an assistive
tool in clinical practice.
Related papers
- Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
We describe the design and results from the BraTS 2023 Intracranial Meningioma Challenge.
The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas.
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor.
arXiv Detail & Related papers (2024-05-16T03:23:57Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Fully Automated Tumor Segmentation for Brain MRI data using Multiplanner
UNet [0.29998889086656577]
This study evaluates the efficacy of the Multi-Planner U-Net (MPUnet) approach in segmenting different tumor subregions across three challenging datasets.
arXiv Detail & Related papers (2024-01-12T10:46:19Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
Two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task.
The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy.
The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
arXiv Detail & Related papers (2023-04-18T10:14:45Z) - Feature-enhanced Generation and Multi-modality Fusion based Deep Neural
Network for Brain Tumor Segmentation with Missing MR Modalities [2.867517731896504]
The main problem is that not all types of MRIs are always available in clinical exams.
We propose a novel brain tumor segmentation network in the case of missing one or more modalities.
The proposed network consists of three sub-networks: a feature-enhanced generator, a correlation constraint block and a segmentation network.
arXiv Detail & Related papers (2021-11-08T10:59:40Z) - 3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework [3.0261170901794308]
Glioma is the most common brain malignant tumor, with a high morbidity rate and a mortality rate of more than three percent.
The main method of acquiring brain tumors in the clinic is MRI of brain tumor regions from multi-modal MRI scan images.
We propose an automatic brain tumor MRI data segmentation framework which is called AGSE-VNet.
arXiv Detail & Related papers (2021-07-26T09:04:59Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.