Landau-Zener-St\"uckelberg Interferometry in dissipative Circuit Quantum
Electrodynamics
- URL: http://arxiv.org/abs/2002.10827v1
- Date: Tue, 25 Feb 2020 12:38:35 GMT
- Title: Landau-Zener-St\"uckelberg Interferometry in dissipative Circuit Quantum
Electrodynamics
- Authors: Mariano Bonifacio, Daniel Dom\'inguez and Mar\'ia Jos\'e S\'anchez
- Abstract summary: We study Landau-Zener-St"uckelberg (LZS) interferometry in a cQED architecture under effects of dissipation.
We unveil important differences in the resonant patterns between the Strong Coupling and Ultra Strong Coupling regimes in the qubit-resonator interaction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study Landau-Zener-St\"uckelberg (LZS) interferometry in a cQED
architecture under effects of dissipation. To be specific, we consider a
superconducting qubit driven by a dc+ac signal and coupled to a transmission
line resonator, but our results are valid for general qubit-resonators devices.
To take the environment into account, we assume that the resonator is coupled
to an ohmic quantum bath. The Floquet-Born-Markov master equation is
numerically solved to obtain the dynamics of the system for arbitrary amplitude
of the drive and different time scales. We unveil important differences in the
resonant patterns between the Strong Coupling and Ultra Strong Coupling regimes
in the qubit-resonator interaction, which are mainly due to the magnitude of
photonic gaps in the energy spectrum of the system. We identify in the LZS
patterns the contribution of the qubit gap and the photonic gaps, showing that
for large driving amplitudes the patterns present a weaving structure due to
the combined intercrossing of the different gaps contributions.
Related papers
- Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Landau-Zener without a Qubit: Unveiling Multiphoton Interference, Synthetic Floquet Dimensions, and Dissipative Quantum Chaos [0.0]
LZSM interference emerges when the parameters of a $textitqubit$ are periodically modulated across an avoided level crossing.
We fabricate two superconducting resonators made of flux-tunable Josephson junction arrays.
We demonstrate that, when two or more LZSM interference peaks, dissipative quantum chaos emerges.
arXiv Detail & Related papers (2024-04-15T18:00:18Z) - Geometric Phase of a Transmon in a Dissipative Quantum Circuit [44.99833362998488]
We study the geometric phases acquired by a paradigmatic setup: a transmon coupled to a superconductor resonating cavity.
In the dissipative model, the non-unitary effects arise from dephasing, relaxation, and decay of the transmon coupled to its environment.
Our approach enables a comparison of the geometric phases obtained in these models, leading to a thorough understanding of the corrections introduced by the presence of the environment.
arXiv Detail & Related papers (2024-01-22T16:41:00Z) - Longitudinal (curvature) couplings of an $N$-level qudit to a
superconducting resonator at the adiabatic limit and beyond [0.0]
We investigate the coupling between a multi-level system, or qudit, and a superconducting (SC) resonator's electromagnetic field.
For the first time, we derive Hamiltonians describing the longitudinal multi-level interactions in a general dispersive regime.
We provide examples illustrating the transition from adiabatic to dispersive coupling in different qubit systems.
arXiv Detail & Related papers (2023-12-05T20:33:59Z) - Topological transitions in dissipatively coupled Su-Schrieffer-Heeger
models [0.0]
We discuss the physics of dissipatively coupled Su-Schrieffer-Heeger (SSH) lattices in systems with bosonic and electrical constituents.
We show that a series of resistively coupled LCR circuits mimics the topology of a dissipatively coupled SSH model.
We also elucidate the emergence of non-reciprocal dissipative coupling which can be controlled by the phase of the coherent interaction strength precipitating in phase-dependent topological transitions and skin effect.
arXiv Detail & Related papers (2023-09-11T14:17:50Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Unconventional Quantum Electrodynamics with Hofstadter-Ladder Waveguide [5.693517450178467]
We propose a novel quantum electrodynamics (QED) platform where quantum emitters interact with a Hofstadter-ladder waveguide.
By assuming emitter's frequency to be resonant with the lower band, we find that the spontaneous emission is chiral.
Due to quantum interference, we find that both the emitter-waveguide interaction and the amplitudes of bound states are periodically modulated by giant emitter's size.
arXiv Detail & Related papers (2022-03-21T07:07:26Z) - Dissipative entanglement generation between two driven qubits in circuit
quantum electrodynamics [0.0]
We explain the mechanism of entanglement generation in terms of an interplay between unitary Landau-Zener-Stuckelberg transitions.
In this way, we found that the steady state of the system can be tuned to be arbitrarily close to a Bell state.
arXiv Detail & Related papers (2021-11-16T23:05:22Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.