Landau-Zener without a Qubit: Unveiling Multiphoton Interference, Synthetic Floquet Dimensions, and Dissipative Quantum Chaos
- URL: http://arxiv.org/abs/2404.10051v1
- Date: Mon, 15 Apr 2024 18:00:18 GMT
- Title: Landau-Zener without a Qubit: Unveiling Multiphoton Interference, Synthetic Floquet Dimensions, and Dissipative Quantum Chaos
- Authors: Leo Peyruchat, Fabrizio Minganti, Marco Scigliuzzo, Filippo Ferrari, Vincent Jouanny, Franco Nori, Vincenzo Savona, Pasquale Scarlino,
- Abstract summary: LZSM interference emerges when the parameters of a $textitqubit$ are periodically modulated across an avoided level crossing.
We fabricate two superconducting resonators made of flux-tunable Josephson junction arrays.
We demonstrate that, when two or more LZSM interference peaks, dissipative quantum chaos emerges.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Landau-Zener-St\"uckelberg-Majorana (LZSM) interference emerges when the parameters of a $\textit{qubit}$ are periodically modulated across an avoided level crossing. Here, we investigate the occurrence of the LZSM phenomenon in nonlinear multilevel bosonic systems, where the interference pattern is determined by multiple energy levels and cannot be described by a level crossing between only two states. We fabricate two superconducting resonators made of flux-tunable Josephson junction arrays. The first device is very weakly nonlinear (the nonlinearity is smaller than the photon-loss rate) and, when a weak driving field is applied, it behaves as a linear resonator, yet shows the same LZSM interference as in a two-level system. Notably, here the interference originates from multiple avoided level crossings of the harmonic ladder. When subjected to a stronger drive, nonlinear effects start playing a role, and the interference pattern departs from the one observed in two-level systems. We demonstrate that, when two or more LZSM interference peaks merge, dissipative quantum chaos emerges. In the second device, where the nonlinearity surpasses the photon-loss rate, we observe additional LZSM interference peaks due to Kerr multiphoton resonances. When described under the light of the Floquet theory, these resonances can be interpreted as synthetic modes of an array of coupled cavities. We derive a simple effective model highlighting the essential features of the entirety of these phenomena. As the control of LZSM in qubit systems led to the implementation of fast protocols for characterization and state preparation, our findings pave the way to better control of nonlinear resonators, with implications for diverse quantum technological platforms.
Related papers
- Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Intermodulation spectroscopy and the nonlinear response of two-level
systems in superconducting coplanar waveguide resonators [0.0]
Two-level system (TLS) loss is limiting the coherence of superconducting quantum circuits.
We observe frequency mixing due to this nonlinearity by applying a two-tone drive to a coplanar waveguide resonator.
Using harmonic balance reconstruction, we recover the nonlinear parameters of the device-TLS interaction.
arXiv Detail & Related papers (2024-02-16T15:57:57Z) - Floquet-engineered nonlinearities and controllable pair-hopping
processes: From optical Kerr cavities to correlated quantum matter [0.0]
This work explores the possibility of creating and controlling unconventional nonlinearities by periodic driving.
By means of a parent quantum many-body description, we demonstrate that such driven systems are well captured by an effective NLSE.
We analyze these intriguing properties both in the weakly-interacting (mean-field) regime, captured by the effective NLSE, and in the strongly-correlated quantum regime.
arXiv Detail & Related papers (2023-04-12T13:56:27Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Nonlinear Non-Hermitian Landau-Zener-St\"uckelberg-Majorana
interferometry [5.526775342940154]
We have studied the non-Hermitian nonlinear LZSM interferometry in a non-Hermitian N-body interacting boson system.
The effect of nonreciprocity and nonlinearity on the energy spectrum, the dynamics, and the formation of the interference fringes have been studied.
arXiv Detail & Related papers (2023-01-02T15:59:07Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Ultralow threshold bistability and generation of long-lived mode in a
dissipatively coupled nonlinear system: application to magnonics [0.0]
We study the remote transfer of bistability from a nonlinear resource in a dissipatively coupled two-mode system.
As a consequence of dissipative coupling and the nonlinearity, a long-lived mode emerges, which is responsible for heightened transmission levels and pronounced sensitivity in signal propagation through the fiber.
arXiv Detail & Related papers (2021-03-23T21:48:17Z) - Landau-Zener-St\"uckelberg Interferometry in dissipative Circuit Quantum
Electrodynamics [0.0]
We study Landau-Zener-St"uckelberg (LZS) interferometry in a cQED architecture under effects of dissipation.
We unveil important differences in the resonant patterns between the Strong Coupling and Ultra Strong Coupling regimes in the qubit-resonator interaction.
arXiv Detail & Related papers (2020-02-25T12:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.