論文の概要: See, Attend and Brake: An Attention-based Saliency Map Prediction Model
for End-to-End Driving
- arxiv url: http://arxiv.org/abs/2002.11020v1
- Date: Mon, 24 Feb 2020 06:01:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 03:47:22.160700
- Title: See, Attend and Brake: An Attention-based Saliency Map Prediction Model
for End-to-End Driving
- Title(参考訳): Attend and Brake: エンド・ツー・エンド運転における注意に基づくサリエンシマップ予測モデル
- Authors: Ekrem Aksoy, Ahmet Yaz{\i}c{\i}, Mahmut Kasap
- Abstract要約: そこで本研究では,ブレーキ決定を行うための新しい注意型サリエンシマップ予測モデルを提案する。
提案モデルは、入力画像から抽出した特徴を注意機構を備えた繰り返しニューラルネットワークに供給するディープニューラルネットワークモデルである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual perception is the most critical input for driving decisions. In this
study, our aim is to understand relationship between saliency and driving
decisions. We present a novel attention-based saliency map prediction model for
making braking decisions This approach constructs a holistic model to the
driving task and can be extended for other driving decisions like steering and
acceleration. The proposed model is a deep neural network model that feeds
extracted features from input image to a recurrent neural network with an
attention mechanism. Then predicted saliency map is used to make braking
decision. We trained and evaluated using driving attention dataset BDD-A, and
saliency dataset CAT2000.
- Abstract(参考訳): 視覚知覚は意思決定を駆動する上で最も重要な入力である。
本研究の目的は,サリエンシと運転意思決定の関係を理解することである。
本稿では、ブレーキ決定を行うための新しい注意ベース唾液マップ予測モデルを提案する。本手法は、駆動タスクに対する全体モデルを構築し、ステアリングや加速度などの他の駆動決定にも適用可能である。
提案モデルは,入力画像から抽出した特徴を注意機構を備えた再帰的ニューラルネットワークに供給する深層ニューラルネットワークモデルである。
そして、予測されたサリエンシマップを使用してブレーキ判定を行う。
ドライビングアテンションデータセットBDD-AとサリエンシデータセットCAT2000を用いて,トレーニングと評価を行った。
関連論文リスト
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Enhancing End-to-End Autonomous Driving with Latent World Model [78.22157677787239]
コストのかかるラベルを必要とせずにエンドツーエンドの運転を改善するための,新しい自己管理手法を提案する。
フレームワーク textbfLAW は LAtent World モデルを用いて,予測エゴアクションと現在のフレームの潜在機能に基づいて,今後の潜在機能を予測する。
その結果,オープンループベンチマークとクローズループベンチマークの両方において,コストのかかるアノテーションを使わずに最先端のパフォーマンスを実現することができた。
論文 参考訳(メタデータ) (2024-06-12T17:59:21Z) - Decision-Making for Autonomous Vehicles with Interaction-Aware
Behavioral Prediction and Social-Attention Neural Network [7.812717451846781]
本稿では,運転者の対話意図を潜伏する社会心理学的パラメータにエンコードする行動モデルを提案する。
我々は、自律走行車決定のための後退水平最適化に基づく制御器を開発した。
我々は,提案する意思決定モジュールについて,強制的な高速道路合併シナリオにおいて広範囲に評価する。
論文 参考訳(メタデータ) (2023-10-31T03:31:09Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Reason induced visual attention for explainable autonomous driving [2.090380922731455]
ディープラーニング (DL) ベースのコンピュータビジョン (CV) モデルは一般的に、解釈性が悪いため、ブラックボックスと見なされる。
本研究の目的は,自律運転におけるDLモデルの解釈可能性を高めることにある。
提案手法は,視覚入力(画像)と自然言語を協調的にモデル化することにより,人間の運転者の学習過程を模倣する。
論文 参考訳(メタデータ) (2021-10-11T18:50:41Z) - DRIVE: Deep Reinforced Accident Anticipation with Visual Explanation [36.350348194248014]
交通事故予測は、ダッシュカムビデオから将来の事故の発生を正確にかつ迅速に予測することを目的としている。
既存のアプローチは通常、将来の事故が起こる前に、空間的および時間的文脈の手がかりを捉えることに重点を置いている。
本稿では, DRIVE という視覚表現を用いた深部強化型事故予測手法を提案する。
論文 参考訳(メタデータ) (2021-07-21T16:33:21Z) - Incorporating Orientations into End-to-end Driving Model for Steering
Control [12.163394005517766]
本稿では,自動運転のための深層ニューラルネットワークモデルを提案する。
単眼画像シーケンスを入力として取得し、直接ステアリング制御角度を生成します。
私たちのデータセットには、都市、国、オフロードなどの複数の運転シナリオが含まれます。
論文 参考訳(メタデータ) (2021-03-10T03:14:41Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
本稿では,車内映像と交通シーン映像の両方に基づいて運転者の意図を検出する枠組みを提案する。
本フレームワークは,83.98%,F1スコア84.3%の精度で予測を行う。
論文 参考訳(メタデータ) (2020-06-20T11:56:32Z) - Deep Learning with Attention Mechanism for Predicting Driver Intention
at Intersection [2.1699196439348265]
提案手法は、高度運転支援システム(ADAS)および自動運転車のアクティブ安全システムの一部として適用されることを約束している。
提案手法の性能評価を行い,本手法が他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-10T16:12:00Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。