論文の概要: DME-Driver: Integrating Human Decision Logic and 3D Scene Perception in
Autonomous Driving
- arxiv url: http://arxiv.org/abs/2401.03641v1
- Date: Mon, 8 Jan 2024 03:06:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 17:41:40.127804
- Title: DME-Driver: Integrating Human Decision Logic and 3D Scene Perception in
Autonomous Driving
- Title(参考訳): DME-Driver:自律運転における人間の決定論理と3次元シーン知覚の統合
- Authors: Wencheng Han, Dongqian Guo, Cheng-Zhong Xu, Jianbing Shen
- Abstract要約: 本稿では,自律運転システムの性能と信頼性を高める新しい自律運転システムを提案する。
DME-Driverは、意思決定者として強力な視覚言語モデル、制御信号生成者として計画指向認識モデルを利用する。
このデータセットを利用することで、論理的思考プロセスを通じて高精度な計画精度を実現する。
- 参考スコア(独自算出の注目度): 65.04871316921327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of autonomous driving, two important features of autonomous
driving car systems are the explainability of decision logic and the accuracy
of environmental perception. This paper introduces DME-Driver, a new autonomous
driving system that enhances the performance and reliability of autonomous
driving system. DME-Driver utilizes a powerful vision language model as the
decision-maker and a planning-oriented perception model as the control signal
generator. To ensure explainable and reliable driving decisions, the logical
decision-maker is constructed based on a large vision language model. This
model follows the logic employed by experienced human drivers and makes
decisions in a similar manner. On the other hand, the generation of accurate
control signals relies on precise and detailed environmental perception, which
is where 3D scene perception models excel. Therefore, a planning oriented
perception model is employed as the signal generator. It translates the logical
decisions made by the decision-maker into accurate control signals for the
self-driving cars. To effectively train the proposed model, a new dataset for
autonomous driving was created. This dataset encompasses a diverse range of
human driver behaviors and their underlying motivations. By leveraging this
dataset, our model achieves high-precision planning accuracy through a logical
thinking process.
- Abstract(参考訳): 自律運転の分野では、自律運転システムの2つの重要な特徴は、決定論理の説明可能性と環境認識の精度である。
本稿では、自律運転システムの性能と信頼性を高める新しい自動運転システムであるDME-Driverを紹介する。
DME-Driverは、意思決定者として強力な視覚言語モデル、制御信号生成者として計画指向認識モデルを利用する。
説明可能かつ信頼性の高い運転決定を保証するため、論理的意思決定者は、大きな視覚言語モデルに基づいて構築される。
このモデルは経験豊富な人間ドライバーが採用する論理に従い、同様の方法で意思決定を行う。
一方で、正確な制御信号の生成は、3dシーンの知覚モデルが優れている精密で詳細な環境知覚に依存する。
そのため、信号発生器として計画指向認識モデルを用いる。
意思決定者が行う論理的判断を、自動運転車の正確な制御信号に変換する。
提案モデルを効果的に訓練するために,自動運転のための新しいデータセットを開発した。
このデータセットは、さまざまな人間の運転行動とその基礎となる動機を含んでいる。
このデータセットを活用することで,論理的な思考プロセスを通じて高精度な計画精度を実現する。
関連論文リスト
- The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey [50.62538723793247]
ドライビング・ワールド・モデル(DWM)は、ドライビング・プロセス中のシーンの進化を予測することに焦点を当てている。
DWM法は、自律運転システムが動的運転環境をよりよく知覚し、理解し、相互作用することを可能にする。
論文 参考訳(メタデータ) (2025-02-14T18:43:15Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - HighwayLLM: Decision-Making and Navigation in Highway Driving with RL-Informed Language Model [5.4854443795779355]
本研究は,大型言語モデル(LLM)の推論能力を利用して,エゴ車両の航法における将来の道程を予測する新しい手法であるHighwayLLMを提案する。
我々のアプローチは、事前訓練された強化学習(RL)モデルも利用して、適切なメタレベルアクションに関する意思決定を行い、ハイレベルプランナーとして機能する。
論文 参考訳(メタデータ) (2024-05-22T11:32:37Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLMは、現実的なシミュレータでクローズループの自律運転を実行するためのフレームワークである。
モジュールADシステムの動作計画モジュールをモデル化するために,MLLM (Multi-modal LLM) を用いる。
このモデルは、Apolloのような既存のADシステムでプラグイン・アンド・プレイすることで、クローズループ運転を行うことができる。
論文 参考訳(メタデータ) (2023-12-14T18:59:05Z) - A Language Agent for Autonomous Driving [31.359413767191608]
本稿では,人間のような知性を自律運転システムに統合するためのパラダイムシフトを提案する。
当社のアプローチはAgent-Driverと呼ばれ,汎用ツールライブラリを導入して,従来の自律走行パイプラインを変革する。
LLM(Large Language Models)によって駆動されるエージェントドライブには直感的な常識と堅牢な推論能力が備わっています。
論文 参考訳(メタデータ) (2023-11-17T18:59:56Z) - Traffic Flow Simulation for Autonomous Driving [5.39623346513589]
本稿では, セルラーオートマトンに基づく車両運動モデルと自転車インテリジェンス理論を適用し, 自律走行のシミュレーション環境を構築する。
自動運転車のアーキテクチャは一般的に認識システム、意思決定システム、制御システムに分けられる。
論文 参考訳(メタデータ) (2023-07-23T02:51:10Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
本稿では,他のドライバの動作から不確実性が生ずる移動トラフィックにマージする複雑なタスクに焦点を当てる。
我々はこの問題を部分的に観測可能なマルコフ決定プロセス(POMDP)とみなし、モンテカルロ木探索でオンラインに解決する。
POMDPの解決策は、接近する車に道を譲る、前方の車から安全な距離を維持する、あるいは交通に合流するといった、高いレベルの運転操作を行う政策である。
論文 参考訳(メタデータ) (2023-03-29T16:12:45Z) - Prediction Based Decision Making for Autonomous Highway Driving [3.6818636539023175]
本稿では,予測に基づく深層強化学習(Deep Reinforcement Learning, PDRL)意思決定モデルを提案する。
高速道路運転の意思決定プロセスにおいて、周囲の車両の操作意図を考慮に入れている。
その結果,提案したPDRLモデルでは,衝突数を減少させることで,Deep Reinforcement Learning (DRL)モデルと比較して意思決定性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-09-05T19:28:30Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
本稿では,シミュレーション都市環境における自律走行車両のナビゲーション設計について述べる。
我々のアーキテクチャは、CARLA Autonomous Driving Challengeの要件を満たすために作られました。
論文 参考訳(メタデータ) (2020-10-23T18:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。