Semi-relativistic $N$-body quantum mechanics of electrons and photons,
with fixed nuclei
- URL: http://arxiv.org/abs/2002.11106v2
- Date: Wed, 5 May 2021 22:14:01 GMT
- Title: Semi-relativistic $N$-body quantum mechanics of electrons and photons,
with fixed nuclei
- Authors: Michael K.-H. Kiessling
- Abstract summary: It is argued that by the end of the 1920s a quantum-mechanical model could have been in place.
This model suggests a re-interpretation of Maxwell's electromagnetic field equations on spacetime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is argued that by the end of the 1920s a quantum-mechanical model could
have been in place, that not only produces the atomic and molecular energy
levels of the many-body Pauli equation with Coulomb interactions and external
classical electro- and magneto-static fields without putting these interactions
in by hand, but that also accurately describes the interaction of charged
particles with electromagnetic radiation, in particular the transitions between
atomic or molecular energy levels associated with emission or absorption of
radiation. This model suggests a re-interpretation of Maxwell's electromagnetic
field equations on spacetime as quantum-mechanical expected values of wave
equations on time X configuration space for photons and electrons. The creation
/ annihilation formalism for photons emerges without invoking second-quantizing
the classical Maxwell equations, and without involving the concept of creation
/ annihilation, thus suggesting an alternative physical interpretation of this
formalism. Furthermore, the model suggests that Lorentz covariance of
macroscopic physics models emerges through a law of large numbers from a
fundamental microscopic model that is not itself Lorentz covariant.
Related papers
- Variational Quantum Simulation of the Fokker-Planck Equation applied to Quantum Radiation Reaction [0.0]
Near-future experiments with Petawatt class lasers are expected to produce a high flux of gamma-ray and electron-positron pairs.
This work will be useful as a first step towards quantum simulation of plasma physics scenarios.
arXiv Detail & Related papers (2024-11-26T15:27:00Z) - The Bethe-Salpeter QED wave equation for bound-state computations of
atoms and molecules [0.0]
Quantum electrodynamics has been established by the mid-twentieth century, primarily as a scattering theory.
bound states can be efficiently computed using robust and general methodologies.
A computational framework, with initial applications and future challenges in relation with precision spectroscopy, is also highlighted.
arXiv Detail & Related papers (2022-11-04T11:47:29Z) - Some Classical Models of Particles and Quantum Gauge Theories [0.0]
The article contains a review and new results of some mathematical models relevant to the interpretation of quantum mechanics.
One-particle wave functions can be modeled as plasma-like collections of a large number of particles and antiparticles.
arXiv Detail & Related papers (2022-11-03T16:53:19Z) - About non-relativistic quantum mechanics and electromagnetism [0.0]
We use the mathematical frame of the field theory and its quantization in the spirit of the quantum-mechanical many-body theory.
We show some examples of the importance of this extension of the many-body theory.
arXiv Detail & Related papers (2022-07-27T05:05:27Z) - Scattering in Terms of Bohmian Conditional Wave Functions for Scenarios
with Non-Commuting Energy and Momentum Operators [0.0]
We show that Bohmian conditional wave functions (BCWF) allow a rigorous discussion of the dynamics of electrons inside open quantum systems.
We discuss the practical application of the method for modeling light-matter interaction phenomena in a resonant tunneling device.
arXiv Detail & Related papers (2022-02-03T13:07:43Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.