The Bethe-Salpeter QED wave equation for bound-state computations of
atoms and molecules
- URL: http://arxiv.org/abs/2211.02389v3
- Date: Sat, 7 Jan 2023 15:57:20 GMT
- Title: The Bethe-Salpeter QED wave equation for bound-state computations of
atoms and molecules
- Authors: Edit M\'atyus, D\'avid Ferenc, P\'eter Jeszenszki, \'Ad\'am Marg\'ocsy
- Abstract summary: Quantum electrodynamics has been established by the mid-twentieth century, primarily as a scattering theory.
bound states can be efficiently computed using robust and general methodologies.
A computational framework, with initial applications and future challenges in relation with precision spectroscopy, is also highlighted.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactions in atomic and molecular systems are dominated by electromagnetic
forces and the theoretical framework must be in the quantum regime. The
physical theory for the combination of quantum mechanics and electromagnetism,
quantum electrodynamics has been established by the mid-twentieth century,
primarily as a scattering theory. To describe atoms and molecules, it is
important to consider bound states. In the non-relativistic quantum mechanics
framework, bound states can be efficiently computed using robust and general
methodologies with systematic approximations developed for solving wave
equations. With the sight of the development of a computational quantum
electrodynamics framework for atomic and molecular matter, the field theoretic
Bethe-Salpeter wave equation expressed in space-time coordinates, its exact
equal-time variant and emergence of a relativistic wave equation is reviewed. A
computational framework, with initial applications and future challenges in
relation with precision spectroscopy, is also highlighted.
Related papers
- Variational Quantum Simulation of the Fokker-Planck Equation applied to Quantum Radiation Reaction [0.0]
Near-future experiments with Petawatt class lasers are expected to produce a high flux of gamma-ray and electron-positron pairs.
This work will be useful as a first step towards quantum simulation of plasma physics scenarios.
arXiv Detail & Related papers (2024-11-26T15:27:00Z) - Minisuperspace model of quantum geometrodynamics in the Madelung-Bohm formalism [0.0]
An analogy between non-relativistic quantum mechanics in the Madelung formulation and quantum geometrodynamics is drawn.
It is shown that the perfect nature of the fluid is broken by the quantum Bohm potential.
The explicit dependences of the cosmic scale factor on the conformal time, which take into account the quantum additive, are found for empty space with spatial curvature and for a spatially flat universe with dust and radiation.
arXiv Detail & Related papers (2024-10-28T15:01:00Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum field theory for multipolar composite bosons with mass defect and relativistic corrections [0.10686401485328585]
We present a subspace effective field theory for interacting, spin carrying, and possibly charged ensembles of atoms composed of nucleus and electron.
We obtain a relativistic coupling between the coboson's center-of-mass motion and internal structure encoded by the mass defect.
arXiv Detail & Related papers (2023-07-12T12:35:27Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Real-Space, Real-Time Approach to Quantum-Electrodynamical
Time-Dependent Density Functional Theory [55.41644538483948]
The equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities.
arXiv Detail & Related papers (2022-09-01T18:49:51Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Mapping quantum chemical dynamics problems onto spin-lattice simulators [0.5249805590164901]
We provide a framework which allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators.
Our approach represents a paradigm shift in the methods used to study quantum nuclear dynamics.
arXiv Detail & Related papers (2021-03-12T17:32:52Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.