論文の概要: Understanding Self-Training for Gradual Domain Adaptation
- arxiv url: http://arxiv.org/abs/2002.11361v1
- Date: Wed, 26 Feb 2020 08:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 14:05:28.491565
- Title: Understanding Self-Training for Gradual Domain Adaptation
- Title(参考訳): 段階的ドメイン適応のための自己学習の理解
- Authors: Ananya Kumar, Tengyu Ma, Percy Liang
- Abstract要約: 段階的なドメイン適応は、対象領域へ徐々にシフトするラベルのないデータのみを与えられたソースドメインで訓練された初期分類器を適応させることが目的である。
目標領域への直接適応が非有界誤差をもたらすような設定下において、段階的なシフトを伴う自己学習の誤差に対する最初の非無空上界を証明した。
この理論解析はアルゴリズムの洞察を導き、無限のデータを持つ場合でも正規化とラベルのシャープ化が不可欠であることを強調し、より小さなワッサーシュタイン無限距離のシフトに対して自己学習が特にうまく働くことを示唆している。
- 参考スコア(独自算出の注目度): 107.37869221297687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning systems must adapt to data distributions that evolve over
time, in applications ranging from sensor networks and self-driving car
perception modules to brain-machine interfaces. We consider gradual domain
adaptation, where the goal is to adapt an initial classifier trained on a
source domain given only unlabeled data that shifts gradually in distribution
towards a target domain. We prove the first non-vacuous upper bound on the
error of self-training with gradual shifts, under settings where directly
adapting to the target domain can result in unbounded error. The theoretical
analysis leads to algorithmic insights, highlighting that regularization and
label sharpening are essential even when we have infinite data, and suggesting
that self-training works particularly well for shifts with small
Wasserstein-infinity distance. Leveraging the gradual shift structure leads to
higher accuracies on a rotating MNIST dataset and a realistic Portraits
dataset.
- Abstract(参考訳): 機械学習システムは、センサーネットワークや自動運転車認識モジュールからブレイン・マシン・インタフェースまで、時間とともに進化するデータ分布に適応する必要がある。
段階的なドメイン適応は、対象領域へ徐々にシフトするラベルのないデータのみを与えられたソースドメインで訓練された初期分類器を適応させることが目的である。
目標領域への直接適応が非有界誤差をもたらすような設定の下で、段階的なシフトを伴う自己学習の誤差に対する最初の非空上界を証明した。
この理論解析はアルゴリズムの洞察を導き、無限のデータを持つ場合でも正規化とラベルのシャープ化が不可欠であることを強調し、より小さなワッサーシュタイン無限距離のシフトに対して自己学習が特にうまく働くことを示唆している。
段階的なシフト構造を活用することで、回転するMNISTデータセットと現実的なPortraitsデータセットの精度が向上する。
関連論文リスト
- Progressive Conservative Adaptation for Evolving Target Domains [76.9274842289221]
従来のドメイン適応は、典型的には、ソースドメインから定常ターゲットドメインに知識を転送する。
このような対象データに対する復元と適応は、時間とともに計算とリソース消費をエスカレートする。
我々は、進歩的保守的適応(PCAda)と呼ばれる、単純で効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-07T04:11:25Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
ディープニューラルネットワークは一般的に、ラベル付きトレーニングデータが多く必要であり、トレーニングデータとテストデータの間のドメインシフトに弱い。
本稿では,ラベル付きソースからラベル付きターゲットドメインへのモデルの適用により,画像登録のための幾何学的領域適応手法を提案する。
本手法は,ベースラインモデルの精度を目標データに適合させながら,ベースラインモデルの50%/47%を継続的に改善する。
論文 参考訳(メタデータ) (2022-07-01T12:16:42Z) - Algorithms and Theory for Supervised Gradual Domain Adaptation [19.42476993856205]
本研究では, 学習者に対して, 学習経路に沿った変化分布からラベル付きデータを利用できるようにするための, 教師付き段階的領域適応の課題について検討する。
この設定の下では、軽度な仮定の下で学習誤差に関する最初の一般化上限を提供する。
本研究の結果は, 損失関数の範囲に依存しないアルゴリズムであり, 軌道上の平均学習誤差にのみ依存する。
論文 参考訳(メタデータ) (2022-04-25T13:26:11Z) - Ranking Distance Calibration for Cross-Domain Few-Shot Learning [91.22458739205766]
数ショット学習の最近の進歩は、より現実的なクロスドメイン設定を促進する。
ドメインギャップとソースとターゲットデータセット間のラベル空間の相違により、共有される知識は極めて限られている。
我々は,タスク内の相互k-アネレスト近傍を発見することで,目標距離行列の校正を行う。
論文 参考訳(メタデータ) (2021-12-01T03:36:58Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Flexible deep transfer learning by separate feature embeddings and
manifold alignment [0.0]
オブジェクト認識は、業界と防衛において重要な存在である。
残念ながら、既存のラベル付きデータセットでトレーニングされたアルゴリズムは、データ分布が一致しないため、直接新しいデータに一般化しない。
本稿では,各領域の特徴抽出を個別に学習することで,この制限を克服する新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-22T19:24:44Z) - Unsupervised Domain Adaptation with Multiple Domain Discriminators and
Adaptive Self-Training [22.366638308792734]
Unsupervised Domain Adaptation (UDA)は、ソースドメインでトレーニングされたモデルの一般化能力を改善し、ラベル付きデータが使用できないターゲットドメインでうまく機能することを目的としている。
本稿では、合成データに基づいて訓練されたディープニューラルネットワークを、2つの異なるデータ分布間のドメインシフトに対処する実シーンに適用するアプローチを提案する。
論文 参考訳(メタデータ) (2020-04-27T11:48:03Z) - Unsupervised Intra-domain Adaptation for Semantic Segmentation through
Self-Supervision [73.76277367528657]
畳み込みニューラルネットワークに基づくアプローチは、セマンティックセグメンテーションにおいて顕著な進歩を遂げた。
この制限に対処するために、グラフィックエンジンから生成された注釈付きデータを使用してセグメンテーションモデルをトレーニングする。
ドメイン間およびドメイン間ギャップを最小化する2段階の自己教師付きドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2020-04-16T15:24:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。