論文の概要: Towards Interpretable Semantic Segmentation via Gradient-weighted Class
Activation Mapping
- arxiv url: http://arxiv.org/abs/2002.11434v1
- Date: Wed, 26 Feb 2020 12:32:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 14:50:35.008103
- Title: Towards Interpretable Semantic Segmentation via Gradient-weighted Class
Activation Mapping
- Title(参考訳): 勾配重み付けクラスアクティベーションマッピングによる意味セグメンテーションの解釈に向けて
- Authors: Kira Vinogradova, Alexandr Dibrov, Gene Myers
- Abstract要約: 本稿では,セマンティックセグメンテーションの解法としてSEG-GRAD-CAMを提案する。
本手法は,各画素のセグメンテーションに対する関連性を示すヒートマップを作成するために局所的に適用された広く使われているGrad-CAM法の拡張である。
- 参考スコア(独自算出の注目度): 71.91734471596432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks have become state-of-the-art in a wide range of
image recognition tasks. The interpretation of their predictions, however, is
an active area of research. Whereas various interpretation methods have been
suggested for image classification, the interpretation of image segmentation
still remains largely unexplored. To that end, we propose SEG-GRAD-CAM, a
gradient-based method for interpreting semantic segmentation. Our method is an
extension of the widely-used Grad-CAM method, applied locally to produce
heatmaps showing the relevance of individual pixels for semantic segmentation.
- Abstract(参考訳): 畳み込みニューラルネットワークは、幅広い画像認識タスクにおいて最先端の技術となっている。
しかし、それらの予測の解釈は研究の活発な領域である。
画像分類には様々な解釈方法が提案されているが、画像分割の解釈はいまだにほとんど解明されていない。
そこで本研究では,セマンティックセグメンテーションの解法であるSEG-GRAD-CAMを提案する。
本手法は,各画素のセグメンテーションに対する関連性を示すヒートマップを作成するために局所的に適用された広く使われているGrad-CAM法の拡張である。
関連論文リスト
- Leveraging CAM Algorithms for Explaining Medical Semantic Segmentation [4.818865062632567]
畳み込みニューラルネットワーク(CNN)は、近年のセグメンテーションタスクにおいて、一般的な結果を実現している。
CNNを解釈する1つの方法は、ヒートマップを表すクラスアクティベーションマップ(CAM)を使用することである。
本稿では,既存の分類法とセグメンテーションに基づく手法の間で,より詳細で説明可能な,一貫性のある結果の転送を提案する。
論文 参考訳(メタデータ) (2024-09-30T13:43:00Z) - Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey [49.47197748663787]
本総説は, 半教師付きセマンティックセグメンテーション分野における擬似ラベル手法に関する最新の研究成果について, 包括的かつ組織的に概観することを目的としている。
さらに,医用およびリモートセンシング画像のセグメンテーションにおける擬似ラベル技術の適用について検討する。
論文 参考訳(メタデータ) (2024-03-04T10:18:38Z) - Transforming gradient-based techniques into interpretable methods [3.6763102409647526]
GAD(Gradient Artificial Distancing)を勾配に基づく技術支援フレームワークとして紹介する。
その主な目的は、階級の区別を確立することによって、影響力のある地域をアクセント化することである。
隠蔽画像に関する実証研究は、この手法によって同定された領域が、クラス分化を促進する上で重要な役割を担っていることを証明している。
論文 参考訳(メタデータ) (2024-01-25T09:24:19Z) - EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
我々は、追加の訓練をすることなく、きめ細かなセグメンテーションマップを生成できる画像セグメンタを開発した。
低次元特徴写像の空間的位置と画像画素間の意味的対応を同定する。
大規模な実験では、生成したセグメンテーションマップがよく説明され、画像の細部を捉えることが示されている。
論文 参考訳(メタデータ) (2024-01-22T07:34:06Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
超高解像度画像のセマンティックセグメンテーションのための新しい教師なし領域適応法を提案する。
潜在コンテンツ表現をドメイン間で混合するエンコーダ・デコーダの原理に基づいて,画像から画像への変換パラダイムを提案する。
都市間比較実験により,提案手法は最先端領域適応法より優れていることが示された。
論文 参考訳(メタデータ) (2022-12-07T18:16:17Z) - Weakly-supervised segmentation of referring expressions [81.73850439141374]
テキスト基底セマンティックSEGmentationは、ピクセルレベルのアノテーションなしで画像レベルの参照式から直接セグメンテーションマスクを学習する。
提案手法は,PhraseCutおよびRefCOCOデータセット上での表現セグメンテーションを弱教師付きで参照する際の有望な結果を示す。
論文 参考訳(メタデータ) (2022-05-10T07:52:24Z) - Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation [0.0]
セグメンテーションの結果の処理と精錬は、セグメンテーションネットワークから派生した誤分類を減らすための一般的な手法である。
グラフベースのアプローチでは、グラフ内の特定の不確実点を利用し、小さなグラフ畳み込みネットワーク(GCN)に従ってセグメンテーションを洗練する。
本稿では,特徴距離に応じた新しい隣人選択機構を提案し,トレーニング手順における2つのネットワークの組み合わせを提案する。
論文 参考訳(メタデータ) (2021-08-06T13:39:35Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
ドメイン適応セマンティックセグメンテーション(ドメイン適応セマンティックセグメンテーション)とは、特定のソースドメインのアノテーションだけで特定のターゲットドメイン上で予測を行うことを指す。
画素ワイド表示アライメントを可能にする意味分布対応コントラスト適応アルゴリズムを提案する。
複数のベンチマークでSDCAを評価し、既存のアルゴリズムを大幅に改善します。
論文 参考訳(メタデータ) (2021-05-11T13:21:25Z) - Rethinking Interactive Image Segmentation: Feature Space Annotation [68.8204255655161]
本稿では,特徴空間投影による複数画像からの対話的・同時セグメントアノテーションを提案する。
本手法は,前景セグメンテーションデータセットにおける最先端手法の精度を上回ることができることを示す。
論文 参考訳(メタデータ) (2021-01-12T10:13:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。