論文の概要: Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation
- arxiv url: http://arxiv.org/abs/2108.03117v1
- Date: Fri, 6 Aug 2021 13:39:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-09 14:40:35.042263
- Title: Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation
- Title(参考訳): 不確実性に基づく医用セグメンテーションのための動的グラフ近傍
- Authors: Ufuk Demir, Atahan Ozer, Yusuf H. Sahin, Gozde Unal
- Abstract要約: セグメンテーションの結果の処理と精錬は、セグメンテーションネットワークから派生した誤分類を減らすための一般的な手法である。
グラフベースのアプローチでは、グラフ内の特定の不確実点を利用し、小さなグラフ畳み込みネットワーク(GCN)に従ってセグメンテーションを洗練する。
本稿では,特徴距離に応じた新しい隣人選択機構を提案し,トレーニング手順における2つのネットワークの組み合わせを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning based methods have shown success in essential
medical image analysis tasks such as segmentation. Post-processing and refining
the results of segmentation is a common practice to decrease the
misclassifications originating from the segmentation network. In addition to
widely used methods like Conditional Random Fields (CRFs) which focus on the
structure of the segmented volume/area, a graph-based recent approach makes use
of certain and uncertain points in a graph and refines the segmentation
according to a small graph convolutional network (GCN). However, there are two
drawbacks of the approach: most of the edges in the graph are assigned randomly
and the GCN is trained independently from the segmentation network. To address
these issues, we define a new neighbor-selection mechanism according to feature
distances and combine the two networks in the training procedure. According to
the experimental results on pancreas segmentation from Computed Tomography (CT)
images, we demonstrate improvement in the quantitative measures. Also,
examining the dynamic neighbors created by our method, edges between
semantically similar image parts are observed. The proposed method also shows
qualitative enhancements in the segmentation maps, as demonstrated in the
visual results.
- Abstract(参考訳): 近年,深層学習に基づく手法は,セグメンテーションなどの重要な医用画像解析タスクに成功している。
セグメンテーションの結果の処理と精錬は、セグメンテーションネットワークに由来する誤分類を減らす一般的なプラクティスである。
セグメント化された体積/面積の構造に焦点を当てた条件ランダム場(CRF)のような広く使われている手法に加えて、グラフベースの最近のアプローチでは、グラフ内の特定の不確実点を利用し、小さなグラフ畳み込みネットワーク(GCN)に従ってセグメント化を洗練する。
しかし、このアプローチの欠点は2つあり、グラフのエッジのほとんどはランダムに割り当てられ、gcnはセグメンテーションネットワークから独立してトレーニングされる。
これらの問題に対処するために,特徴距離に応じて新しい隣接選択機構を定義し,学習手順における2つのネットワークを結合する。
CT(CT)画像による膵分画実験の結果,定量値の改善が示された。
また,提案手法が生成する動的近傍を調べることで,意味的に類似した画像部分間のエッジが観察される。
提案手法は,視覚的結果に示すように,セグメンテーションマップの質的拡張も示す。
関連論文リスト
- CGAM: Click-Guided Attention Module for Interactive Pathology Image
Segmentation via Backpropagating Refinement [8.590026259176806]
腫瘍領域のセグメンテーションは、デジタル病理の定量的解析に欠かせない課題である。
最近のディープニューラルネットワークは、様々な画像分割タスクで最先端のパフォーマンスを示している。
本稿では,クリック型ユーザインタラクションによるディープニューラルネットワークの出力を改良する対話的セグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2023-07-03T13:45:24Z) - Implicit Anatomical Rendering for Medical Image Segmentation with
Stochastic Experts [11.007092387379078]
医用画像セグメンテーションの学習を支援するために,解剖学的レベルで設計された汎用的な暗黙的ニューラルネットワークレンダリングフレームワークであるMORSEを提案する。
医用画像のセグメンテーションをエンドツーエンドのレンダリング問題として定式化する。
実験の結果,MORSEは異なる医療セグメントのバックボーンでうまく機能することが示された。
論文 参考訳(メタデータ) (2023-04-06T16:44:03Z) - Spatial Correspondence between Graph Neural Network-Segmented Images [1.807691213023136]
医用画像分割のためのグラフニューラルネットワーク(GNN)が提案されている。
本研究は,空間対応を確立するための共通トポロジを用いて,これらのGNNのポテンシャルについて検討する。
CT画像における局所椎体サブリージョンの登録例を例に,GNNをベースとしたセグメンテーションが正確かつ信頼性の高いローカライゼーションを実現することを示す実験結果を得た。
論文 参考訳(メタデータ) (2023-03-12T03:25:01Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
画像中の新型コロナウイルス感染領域セグメンテーションの長距離依存性のモデリングを強化するために,PSGRモジュールを提案する。
PSGRモジュールは不正確なピクセルからノードへの投影を回避し、グローバルな推論のために各ピクセル固有の情報を保存する。
このソリューションは、3つの公開データセット上の4つの広く使われているセグメンテーションモデルに対して評価されている。
論文 参考訳(メタデータ) (2021-08-09T04:58:23Z) - Left Ventricle Contouring in Cardiac Images Based on Deep Reinforcement
Learning [0.12891210250935145]
本稿では,エージェント強化学習に基づく医用画像のインタラクティブセグメンテーション手法を提案する。
我々は,ある順序で対象輪郭を描画する動的過程を,深い強化学習法に基づくマルコフ決定過程(MDP)としてモデル化する。
実験の結果, 少数の医用画像データセットにおいて, 左室のセグメンテーション効果は良好であった。
論文 参考訳(メタデータ) (2021-06-08T06:30:32Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
QBSPECT(Quantitative bone single-photon emission Computed Tomography)は、平面骨シンチグラフィよりも骨転移をより定量的に評価する可能性を秘めています。
解剖学的領域-関心(ROI)のセグメント化は、まだ専門家による手動の記述に大きく依存しています。
本研究では,QBSPECT画像を病変,骨,背景に分割するための高速かつ堅牢な自動分割法を提案する。
論文 参考訳(メタデータ) (2021-04-17T19:03:52Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Towards Interpretable Semantic Segmentation via Gradient-weighted Class
Activation Mapping [71.91734471596432]
本稿では,セマンティックセグメンテーションの解法としてSEG-GRAD-CAMを提案する。
本手法は,各画素のセグメンテーションに対する関連性を示すヒートマップを作成するために局所的に適用された広く使われているGrad-CAM法の拡張である。
論文 参考訳(メタデータ) (2020-02-26T12:32:40Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。