論文の概要: Nonlinear classifiers for ranking problems based on kernelized SVM
- arxiv url: http://arxiv.org/abs/2002.11436v1
- Date: Wed, 26 Feb 2020 12:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 14:16:07.198878
- Title: Nonlinear classifiers for ranking problems based on kernelized SVM
- Title(参考訳): カーネル化svmに基づくランキング問題に対する非線形分類器
- Authors: V\'aclav M\'acha, Luk\'a\v{s} Adam, V\'aclav \v{S}m\'idl
- Abstract要約: 多くの分類問題は、全てのサンプルではなく、最も関連性の高いサンプルのみの性能を最大化することに焦点を当てている。
本稿では、これらの線形分類問題のいくつかのクラスを含む一般的な枠組みを導出する。
問題を二元化し、カーネルを追加し、コンポーネントワイドのアセンジ法を提案する。
これにより、FashionMNISTのような比較的大きなデータセット上で、20ミリ秒未満で実行できます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many classification problems focus on maximizing the performance only on the
samples with the highest relevance instead of all samples. As an example, we
can mention ranking problems, accuracy at the top or search engines where only
the top few queries matter. In our previous work, we derived a general
framework including several classes of these linear classification problems. In
this paper, we extend the framework to nonlinear classifiers. Utilizing a
similarity to SVM, we dualize the problems, add kernels and propose a
componentwise dual ascent method. This allows us to perform one iteration in
less than 20 milliseconds on relatively large datasets such as FashionMNIST.
- Abstract(参考訳): 多くの分類問題は、全てのサンプルではなく、最も関連性の高いサンプルのみの性能を最大化することに焦点を当てている。
例えば、ランキングの問題、上位の精度、あるいは上位のクエリだけが問題となる検索エンジンについて言及することができる。
前回の研究で、これらの線形分類問題のいくつかのクラスを含む一般的な枠組みを導出した。
本稿では,フレームワークを非線形分類器に拡張する。
svm との類似性を利用して問題を双対化し,カーネルを追加し,コンポーネント単位の双対上昇法を提案する。
これにより、FashionMNISTのような比較的大きなデータセット上で、1回のイテレーションを20ミリ秒未満で実行できます。
関連論文リスト
- A Multi-Class SWAP-Test Classifier [0.0]
この研究は、そのバイナリ前駆体と最近の研究におけるラベル状態の使用に触発された最初のマルチクラスSWAP-Test分類器を示す。
従来の研究とは対照的に、必要な量子ビット数、測定戦略、使用する回路の位相はクラス数に不変である。
解析結果と数値シミュレーションの両方で、この分類器は多様な分類問題に適用されるだけでなく、特定の雑音に対して堅牢であることが示された。
論文 参考訳(メタデータ) (2023-02-06T18:31:43Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Multi-Label Quantification [78.83284164605473]
定量化とは、教師なしデータサンプルにおいて、興味あるクラスの相対周波数の予測子を生成する教師付き学習課題である。
本研究では,その相対頻度をより正確に予測するために,興味あるクラス間の依存関係を活用しようとするクラス有病率値の推定手法を提案する。
論文 参考訳(メタデータ) (2022-11-15T11:29:59Z) - Review of Methods for Handling Class-Imbalanced in Classification
Problems [0.0]
場合によっては、あるクラスはほとんどの例を含むが、他方はより重要なクラスであり、しかしながら、少数の例で表される。
本稿では、データレベル、アルゴリズムレベル、ハイブリッド、コスト感受性学習、ディープラーニングを含む、クラス不均衡による学習の問題に対処する最も広く使われている手法について検討する。
論文 参考訳(メタデータ) (2022-11-10T10:07:10Z) - Generalization for multiclass classification with overparameterized
linear models [3.3434274586532515]
クラスが多すぎる限り、多クラス分類は二分分類のように振る舞うことが示される。
様々な技術的課題に加えて、二項分類設定との大きな違いは、クラス数が増加するにつれて、各クラスの正のトレーニング例がマルチクラス設定で比較的少ないことである。
論文 参考訳(メタデータ) (2022-06-03T05:52:43Z) - Handling Imbalanced Classification Problems With Support Vector Machines
via Evolutionary Bilevel Optimization [73.17488635491262]
サポートベクトルマシン(SVM)は、バイナリ分類問題に対処する一般的な学習アルゴリズムである。
この記事では、EBCS-SVMについて紹介する。
論文 参考訳(メタデータ) (2022-04-21T16:08:44Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
最先端のセマンティックセグメンテーション手法は、良い結果を得るために十分なラベル付きデータを必要とする。
少数のラベル付きサポートサンプルを持つ新しいクラスに迅速に適応するモデルを学習することで,この問題に対処するためのショットセグメンテーションが提案されている。
これらのフレームワークは、高レベルのセマンティック情報の不適切な使用により、目に見えないクラスにおける一般化能力の低下という課題に直面している。
論文 参考訳(メタデータ) (2020-08-04T10:41:32Z) - Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy [57.68486382473194]
我々は,教師付き学習とメタ学習の両方において,MCFS(Multi-class few-shot)問題について検討した。
本稿では,クラス階層を事前知識として活用し,粗大な分類器を訓練する。
モデル「メモリ拡張階層分類ネットワーク(MahiNet)」は、各粗いクラスが複数の細かなクラスをカバーできる粗い粒度分類を行う。
論文 参考訳(メタデータ) (2020-06-28T01:11:34Z) - A novel embedded min-max approach for feature selection in nonlinear
support vector machine classification [0.0]
min-max最適化問題に基づく組込み特徴選択法を提案する。
双対性理論を活用することにより、min-max問題を等価に修正し、それ以上のアドを伴わずに解決する。
提案手法の効率性と有用性は,いくつかのベンチマークデータセットで検証される。
論文 参考訳(メタデータ) (2020-04-21T09:40:38Z) - A Unified Framework for Multiclass and Multilabel Support Vector
Machines [6.425654442936364]
マルチクラスおよびマルチラベルの分類問題に対処するために,SVM の簡単な拡張を提案する。
本フレームワークは, 従来のソフトマージンSVMフレームワークから, 直接反対構造で逸脱する。
その結果,マルチクラス分類問題とマルチラベル分類問題の両方に対する競合型分類器が示された。
論文 参考訳(メタデータ) (2020-03-25T03:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。