Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images
- URL: http://arxiv.org/abs/2002.11509v1
- Date: Wed, 26 Feb 2020 14:10:40 GMT
- Title: Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images
- Authors: Fateme Mostafaie, Reihaneh Teimouri, Zahra Nabizadeh, Nader Karimi,
Shadrokh Samavi
- Abstract summary: We propose a fast, automated method, with light computational complexity, to find the smallest bounding box around the tumor region.
This region-of-interest can be used as a preprocessing step in training networks for subregion tumor segmentation.
The proposed method is evaluated on the BraTS 2015 dataset, and the average gained DICE score is 0.73, which is an acceptable result for this application.
- Score: 8.75217589103206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glioma is a common type of brain tumor, and accurate detection of it plays a
vital role in the diagnosis and treatment process. Despite advances in medical
image analyzing, accurate tumor segmentation in brain magnetic resonance (MR)
images remains a challenge due to variations in tumor texture, position, and
shape. In this paper, we propose a fast, automated method, with light
computational complexity, to find the smallest bounding box around the tumor
region. This region-of-interest can be used as a preprocessing step in training
networks for subregion tumor segmentation. By adopting the outputs of this
algorithm, redundant information is removed; hence the network can focus on
learning notable features related to subregions' classes. The proposed method
has six main stages, in which the brain segmentation is the most vital step.
Expectation-maximization (EM) and K-means algorithms are used for brain
segmentation. The proposed method is evaluated on the BraTS 2015 dataset, and
the average gained DICE score is 0.73, which is an acceptable result for this
application.
Related papers
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction [0.0]
Brain tumors are one of the deadliest forms of cancer with a mortality rate of over 80%.
In medical analysis, the manual annotation and segmentation of a brain tumor can be a complicated task.
This paper proposes a region of interest detection algorithm that is implemented during data preprocessing to locate salient features and remove extraneous MRI data.
A fully convolutional autoencoder with soft attention segments the different brain MRIs.
arXiv Detail & Related papers (2023-12-31T20:42:52Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
Brain tumor is one of the severe health complications which lead to decrease in life expectancy of the individuals.
Timely detection and prediction of brain tumors can be helpful to prevent death rates due to brain tumors.
Deep learning-based approaches have emerged as a promising solution to develop automated biomedical image exploration tools.
arXiv Detail & Related papers (2023-07-16T14:06:45Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
Manual segmentation of brain tumors from 3D MRI volumes is a time-consuming task.
Our model, QuickTumorNet, demonstrated fast, reliable, and accurate brain tumor segmentation.
arXiv Detail & Related papers (2020-12-22T23:16:43Z) - Unsupervised Region-based Anomaly Detection in Brain MRI with
Adversarial Image Inpainting [4.019851137611981]
This paper proposes a fully automatic, unsupervised inpainting-based brain tumour segmentation system for T1-weighted MRI.
First, a deep convolutional neural network (DCNN) is trained to reconstruct missing healthy brain regions. Then, anomalous regions are determined by identifying areas of highest reconstruction loss.
We show the proposed system is able to segment various sized and abstract tumours and achieves a mean and standard deviation Dice score of 0.771 and 0.176, respectively.
arXiv Detail & Related papers (2020-10-05T12:13:44Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.