QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors
- URL: http://arxiv.org/abs/2012.12410v1
- Date: Tue, 22 Dec 2020 23:16:43 GMT
- Title: QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors
- Authors: Benjamin Maas, Erfan Zabeh, Soroush Arabshahi
- Abstract summary: Manual segmentation of brain tumors from 3D MRI volumes is a time-consuming task.
Our model, QuickTumorNet, demonstrated fast, reliable, and accurate brain tumor segmentation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-invasive techniques such as magnetic resonance imaging (MRI) are widely
employed in brain tumor diagnostics. However, manual segmentation of brain
tumors from 3D MRI volumes is a time-consuming task that requires trained
expert radiologists. Due to the subjectivity of manual segmentation, there is
low inter-rater reliability which can result in diagnostic discrepancies. As
the success of many brain tumor treatments depends on early intervention, early
detection is paramount. In this context, a fully automated segmentation method
for brain tumor segmentation is necessary as an efficient and reliable method
for brain tumor detection and quantification. In this study, we propose an
end-to-end approach for brain tumor segmentation, capitalizing on a modified
version of QuickNAT, a brain tissue type segmentation deep convolutional neural
network (CNN). Our method was evaluated on a data set of 233 patient's T1
weighted images containing three tumor type classes annotated (meningioma,
glioma, and pituitary). Our model, QuickTumorNet, demonstrated fast, reliable,
and accurate brain tumor segmentation that can be utilized to assist clinicians
in diagnosis and treatment.
Related papers
- SKIPNet: Spatial Attention Skip Connections for Enhanced Brain Tumor Classification [3.8233569758620063]
Early detection of brain tumors is essential for timely treatment, yet access to diagnostic facilities remains limited in remote areas.
This study proposes an automated deep learning model for brain tumor detection and classification using MRI data.
The model, incorporating spatial attention, achieved 96.90% accuracy, enhancing the aggregation of contextual information for better pattern recognition.
arXiv Detail & Related papers (2024-12-10T18:32:42Z) - Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - Self-calibrated convolution towards glioma segmentation [45.74830585715129]
We evaluate self-calibrated convolutions in different parts of the nnU-Net network to demonstrate that self-calibrated modules in skip connections can significantly improve the enhanced-tumor and tumor-core segmentation accuracy.
arXiv Detail & Related papers (2024-02-07T19:51:13Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
This paper proposes multi-task attention guided encoder-decoder network (MAG-Net) to classify and segment the brain tumor regions using MRI images.
The model achieved promising results as compared to existing state-of-the-art models.
arXiv Detail & Related papers (2021-07-26T16:51:00Z) - 3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework [3.0261170901794308]
Glioma is the most common brain malignant tumor, with a high morbidity rate and a mortality rate of more than three percent.
The main method of acquiring brain tumors in the clinic is MRI of brain tumor regions from multi-modal MRI scan images.
We propose an automatic brain tumor MRI data segmentation framework which is called AGSE-VNet.
arXiv Detail & Related papers (2021-07-26T09:04:59Z) - Multi-channel MRI Embedding: An EffectiveStrategy for Enhancement of
Human Brain WholeTumor Segmentation [2.869946954477617]
One of the most important tasks in medical image processing is the brain's whole tumor segmentation.
Brain tumors often can be malignant or benign, if they are detected at an early stage.
Our research introduces an efficient strategy called Multi-channel MRI embedding to improve the result of deep learning-based tumor segmentation.
arXiv Detail & Related papers (2020-09-13T23:44:16Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.