The role of regularization in classification of high-dimensional noisy
Gaussian mixture
- URL: http://arxiv.org/abs/2002.11544v1
- Date: Wed, 26 Feb 2020 14:54:28 GMT
- Title: The role of regularization in classification of high-dimensional noisy
Gaussian mixture
- Authors: Francesca Mignacco, Florent Krzakala, Yue M. Lu and Lenka Zdeborov\'a
- Abstract summary: We consider a high-dimensional mixture of two Gaussians in the noisy regime.
We provide a rigorous analysis of the generalization error of regularized convex classifiers.
We discuss surprising effects of the regularization that in some cases allows to reach the Bayes-optimal performances.
- Score: 36.279288150100875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a high-dimensional mixture of two Gaussians in the noisy regime
where even an oracle knowing the centers of the clusters misclassifies a small
but finite fraction of the points. We provide a rigorous analysis of the
generalization error of regularized convex classifiers, including ridge, hinge
and logistic regression, in the high-dimensional limit where the number $n$ of
samples and their dimension $d$ go to infinity while their ratio is fixed to
$\alpha= n/d$. We discuss surprising effects of the regularization that in some
cases allows to reach the Bayes-optimal performances. We also illustrate the
interpolation peak at low regularization, and analyze the role of the
respective sizes of the two clusters.
Related papers
- Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
We investigate the behavior of a general class of regularized convex classifiers in the high-dimensional limit.
Our focus is on the generalization error and variable selection properties of the estimators.
arXiv Detail & Related papers (2024-10-25T19:58:36Z) - Classification of Heavy-tailed Features in High Dimensions: a
Superstatistical Approach [1.4469725791865984]
We characterise the learning of a mixture of two clouds of data points with generic centroids.
We study the generalisation performance of the obtained estimator, we analyse the role of regularisation, and we analytically the separability transition.
arXiv Detail & Related papers (2023-04-06T07:53:05Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
We propose a novel non particular approach to robust principal component analysis for HSI denoising.
We develop accurate approximations to both rank and sparse components.
Experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-01-08T11:48:46Z) - Minimax Supervised Clustering in the Anisotropic Gaussian Mixture Model:
A new take on Robust Interpolation [5.98367009147573]
We study the supervised clustering problem under the two-component anisotropic Gaussian mixture model.
We show that in the high-dimensional regime, the linear discriminant analysis (LDA) classifier turns out to be sub-optimal in the minimax sense.
arXiv Detail & Related papers (2021-11-13T05:19:37Z) - Local versions of sum-of-norms clustering [77.34726150561087]
We show that our method can separate arbitrarily close balls in the ball model.
We prove a quantitative bound on the error incurred in the clustering of disjoint connected sets.
arXiv Detail & Related papers (2021-09-20T14:45:29Z) - Learning Gaussian Mixtures with Generalised Linear Models: Precise
Asymptotics in High-dimensions [79.35722941720734]
Generalised linear models for multi-class classification problems are one of the fundamental building blocks of modern machine learning tasks.
We prove exacts characterising the estimator in high-dimensions via empirical risk minimisation.
We discuss how our theory can be applied beyond the scope of synthetic data.
arXiv Detail & Related papers (2021-06-07T16:53:56Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Wide flat minima and optimal generalization in classifying
high-dimensional Gaussian mixtures [8.556763944288116]
We show that there exist configurations that achieve the Bayes-optimal generalization error, even in the case of unbalanced clusters.
We also consider the algorithmically relevant case of targeting wide flat minima of the mean squared error loss.
arXiv Detail & Related papers (2020-10-27T01:32:03Z) - Efficient Clustering for Stretched Mixtures: Landscape and Optimality [4.2111286819721485]
This paper considers a canonical clustering problem where one receives unlabeled samples drawn from a balanced mixture of two elliptical distributions.
We show that the non-optimal clustering function exhibits desirable geometric properties when the sample size exceeds some constant statistical objectives.
arXiv Detail & Related papers (2020-03-22T17:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.