論文の概要: Efficient reinforcement learning control for continuum robots based on
Inexplicit Prior Knowledge
- arxiv url: http://arxiv.org/abs/2002.11573v2
- Date: Fri, 2 Oct 2020 17:02:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 15:27:56.488232
- Title: Efficient reinforcement learning control for continuum robots based on
Inexplicit Prior Knowledge
- Title(参考訳): 不明確な事前知識に基づく連続ロボットの効率的な強化学習制御
- Authors: Junjia Liu, Jiaying Shou, Zhuang Fu, Hangfei Zhou, Rongli Xie, Jun
Zhang, Jian Fei and Yanna Zhao
- Abstract要約: 本稿では,未熟な事前知識に基づく効率的な強化学習手法を提案する。
本手法を用いることで、腱駆動ロボットのアクティブな視覚追跡と距離維持を実現することができる。
- 参考スコア(独自算出の注目度): 3.3645162441357437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared to rigid robots that are generally studied in reinforcement
learning, the physical characteristics of some sophisticated robots such as
soft or continuum robots are higher complicated. Moreover, recent reinforcement
learning methods are data-inefficient and can not be directly deployed to the
robot without simulation. In this paper, we propose an efficient reinforcement
learning method based on inexplicit prior knowledge in response to such
problems. We first corroborate the method by simulation and employed directly
in the real world. By using our method, we can achieve active visual tracking
and distance maintenance of a tendon-driven robot which will be critical in
minimally invasive procedures. Codes are available at
https://github.com/Skylark0924/TendonTrack.
- Abstract(参考訳): 強化学習において一般的に研究される剛体ロボットと比較して,ソフトロボットや連続ロボットなどの高度なロボットの物理的特性は複雑である。
また、最近の強化学習手法はデータ非効率であり、シミュレーションなしでは直接ロボットにデプロイできない。
本稿では,このような問題に応答して,未熟な事前知識に基づく効率的な強化学習手法を提案する。
まず,シミュレーションによる手法のコロボケートを行い,実世界で直接採用する。
本手法を用いることで,最小限の侵襲的操作において必須となる腱駆動ロボットのアクティブな視覚追跡と遠隔維持を実現することができる。
コードはhttps://github.com/Skylark0924/TendonTrack.comで入手できる。
関連論文リスト
- Simulation-Aided Policy Tuning for Black-Box Robot Learning [47.83474891747279]
本稿では,データ効率の向上に着目した新しいブラックボックスポリシー探索アルゴリズムを提案する。
このアルゴリズムはロボット上で直接学習し、シミュレーションを追加の情報源として扱い、学習プロセスを高速化する。
ロボットマニピュレータ上でのタスク学習の高速化と成功を,不完全なシミュレータの助けを借りて示す。
論文 参考訳(メタデータ) (2024-11-21T15:52:23Z) - SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
タスクをより小さな学習サブプロブレムに分解し、第2に模倣と強化学習を組み合わせてその強みを最大化するシステムであるspireを提案する。
我々は、模倣学習、強化学習、計画を統合する従来の手法よりも平均タスク性能が35%から50%向上していることを発見した。
論文 参考訳(メタデータ) (2024-10-23T17:42:07Z) - Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEARは、ロボットを現実世界の環境に配置し、中断することなく自律的に訓練することを可能にする。
システムはリモート、クラウドソース、非専門家からの非同期フィードバックのみを必要とする、Webインターフェースにロボットエクスペリエンスをストリームする。
論文 参考訳(メタデータ) (2023-10-31T16:43:56Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Learning Visual Tracking and Reaching with Deep Reinforcement Learning
on a UR10e Robotic Arm [2.2168889407389445]
強化学習アルゴリズムは、ロボットがそれらを再プログラミングすることなく、新しいタスクを完了するための最適な解を学習できる可能性を提供する。
強化学習における現在の最先端技術は、最適な性能を達成するために、高速なシミュレーションと並列化に依存している。
本稿では,産業用UR10eロボットへの深部強化学習の適用について概説する。
論文 参考訳(メタデータ) (2023-08-28T15:34:43Z) - Evaluating Continual Learning on a Home Robot [30.620205237707342]
そこで本研究では,現実の低コストなホームロボットにおいて,連続学習手法をどのように適用することができるかを示す。
本稿では,スキルライブラリを継続的に学習するSANERと,それを支援するバックボーンとしてABIPを提案する。
論文 参考訳(メタデータ) (2023-06-04T17:14:49Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。