論文の概要: Towards General Purpose Robots at Scale: Lifelong Learning and Learning to Use Memory
- arxiv url: http://arxiv.org/abs/2501.10395v1
- Date: Sat, 28 Dec 2024 21:13:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-26 03:36:36.955703
- Title: Towards General Purpose Robots at Scale: Lifelong Learning and Learning to Use Memory
- Title(参考訳): 大規模汎用ロボットを目指して--生涯学習とメモリ活用学習
- Authors: William Yue,
- Abstract要約: このテーマは、記憶と生涯学習という、長い時間をかけて動くロボットにとっての2つの重要な課題に対処することに焦点を当てている。
まず,連続世界ベンチマークにおける最先端性能を実現するトラジェクトリベースディープ生成再生法であるt-DGRを紹介する。
第2に,人間の実演を利用してエージェントに効果的なメモリ利用を教えるフレームワークを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The widespread success of artificial intelligence in fields like natural language processing and computer vision has not yet fully transferred to robotics, where progress is hindered by the lack of large-scale training data and the complexity of real-world tasks. To address this, many robot learning researchers are pushing to get robots deployed at scale in everyday unstructured environments like our homes to initiate a data flywheel. While current robot learning systems are effective for certain short-horizon tasks, they are not designed to autonomously operate over long time horizons in unstructured environments. This thesis focuses on addressing two key challenges for robots operating over long time horizons: memory and lifelong learning. We propose two novel methods to advance these capabilities. First, we introduce t-DGR, a trajectory-based deep generative replay method that achieves state-of-the-art performance on Continual World benchmarks, advancing lifelong learning. Second, we develop a framework that leverages human demonstrations to teach agents effective memory utilization, improving learning efficiency and success rates on Memory Gym tasks. Finally, we discuss future directions for achieving the lifelong learning and memory capabilities necessary for robots to function at scale in real-world settings.
- Abstract(参考訳): 自然言語処理やコンピュータビジョンといった分野における人工知能の成功は、まだロボット工学に完全に移行していない。
これを解決するために、多くのロボット学習研究者は、私たちの家のような日常的な非構造環境でロボットを大規模に展開させ、データフライホイールを起動させようとしている。
現在のロボット学習システムは、特定の短地作業に有効であるが、非構造環境における長時間の地平線を自律的に操作するように設計されていない。
このテーマは、記憶と生涯学習という、長い時間をかけて動くロボットにとっての2つの重要な課題に対処することに焦点を当てている。
本稿では,これらの能力向上のための2つの新しい手法を提案する。
まず,連続世界ベンチマークにおける最先端性能を達成し,生涯学習を向上するトラジェクトリベースの深層生成再生手法であるt-DGRを紹介する。
第2に,人間の実演を利用してエージェントに効果的なメモリ利用を教えるフレームワークを開発し,学習効率の向上とメモリGymタスクの成功率の向上を図る。
最後に,ロボットが現実の環境で大規模に機能するために必要な生涯学習と記憶能力を実現するための今後の方向性について論じる。
関連論文リスト
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
タスクをより小さな学習サブプロブレムに分解し、第2に模倣と強化学習を組み合わせてその強みを最大化するシステムであるspireを提案する。
我々は、模倣学習、強化学習、計画を統合する従来の手法よりも平均タスク性能が35%から50%向上していることを発見した。
論文 参考訳(メタデータ) (2024-10-23T17:42:07Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Exploring Visual Pre-training for Robot Manipulation: Datasets, Models
and Methods [14.780597545674157]
本稿では,3つの基本的視点から,視覚的事前学習がロボット操作作業に及ぼす影響について検討する。
自己教師型学習と教師型学習を組み合わせた視覚的事前学習方式Vi-PRoMを提案する。
論文 参考訳(メタデータ) (2023-08-07T14:24:52Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
ロボット学習の最近の進歩は、ロボットが操作タスクを実行できることを約束している。
この進歩に寄与する要因の1つは、モデルのトレーニングに使用されるロボットデータのスケールである。
本稿では,コンピュータビジョンや自然言語処理に広く用いられているテキスト・ツー・イメージ基盤モデルを利用した代替手法を提案する。
論文 参考訳(メタデータ) (2023-02-22T18:47:51Z) - Back to Reality for Imitation Learning [8.57914821832517]
模倣学習と一般のロボット学習は、ロボット工学のブレークスルーではなく、機械学習のブレークスルーによって生まれた。
私たちは、現実世界のロボット学習のより良い指標は時間効率であり、人間の真のコストをモデル化するものだと考えています。
論文 参考訳(メタデータ) (2021-11-25T02:03:52Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
強化学習アルゴリズムは、エンドツーエンドで複雑なロボティクスタスクを解くことができることが証明されている。
本稿では,ロボットの生の知覚情報から得られる高次元の観察から,低次元状態表現の学習と最適ポリシーの学習を組み合わせた枠組みを提案する。
論文 参考訳(メタデータ) (2021-07-04T15:42:01Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
与えられたデータセットの任意の目標状態に到達するために学習することによって、環境の機能的な理解を学ぶ目的を提案する。
提案手法は,高次元カメラ画像上で動作し,これまで見つからなかったシーンやオブジェクトに一般化した実ロボットの様々なスキルを学習することができる。
論文 参考訳(メタデータ) (2021-04-15T20:10:11Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。