Converting microwave and telecom photons with a silicon photonic
nanomechanical interface
- URL: http://arxiv.org/abs/2002.11628v1
- Date: Wed, 26 Feb 2020 17:10:39 GMT
- Title: Converting microwave and telecom photons with a silicon photonic
nanomechanical interface
- Authors: G. Arnold, M. Wulf, S. Barzanjeh, E. S. Redchenko, A. Rueda, W. J.
Hease, F. Hassani, and J. M. Fink
- Abstract summary: We demonstrate a fully integrated, coherent transducer connecting the microwave X and the telecom S bands.
The device is fabricated from CMOS compatible materials and achieves a V$_pi$ as low as 16 $mu$V for sub-watt pump powers.
Such power-efficient, ultra-sensitive and highly integrated hybrid interconnects might find applications ranging from quantum communication and RF receivers to magnetic resonance imaging.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Practical quantum networks require low-loss and noise-resilient optical
interconnects as well as non-Gaussian resources for entanglement distillation
and distributed quantum computation. The latter could be provided by
superconducting circuits but - despite growing efforts and rapid progress -
existing solutions to interface the microwave and optical domains lack either
scalability or efficiency, and in most cases the conversion noise is not known.
In this work we utilize the unique opportunities of silicon photonics, cavity
optomechanics and superconducting circuits to demonstrate a fully integrated,
coherent transducer connecting the microwave X and the telecom S bands with a
total (internal) bidirectional transduction efficiency of 1.2% (135 %) at
millikelvin temperatures. The coupling relies solely on the radiation pressure
interaction mediated by the femtometer-scale motion of two silicon nanobeams
and includes an optomechanical gain of about 20 dB. The chip-scale device is
fabricated from CMOS compatible materials and achieves a V$_\pi$ as low as 16
$\mu$V for sub-nanowatt pump powers. Such power-efficient, ultra-sensitive and
highly integrated hybrid interconnects might find applications ranging from
quantum communication and RF receivers to magnetic resonance imaging.
Related papers
- Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Optomechanical ring resonator for efficient microwave-optical frequency
conversion [3.8548408603545106]
Phonons traveling in solid-state devices are emerging as a universal excitation that can couple to different physical systems through mechanical interaction.
It is possible to build optomechanical integrated circuits (OMICs) that guide both photons and phonons and interconnect discrete photonic and phononic devices.
Here, we demonstrate an OMIC including an optomechanical ring resonator (OMR) in which infrared photons and GHz phonons co-resonate to induce significantly enhanced interconversion.
arXiv Detail & Related papers (2023-11-10T23:54:07Z) - Terahertz-Mediated Microwave-to-Optical Transduction [0.0]
Transduction of quantum signals between the microwave and the optical ranges will unlock powerful hybrid quantum systems.
Most microwave-to-optical quantum transducers suffer from thermal noise due to pump absorption.
We analyze the coupled thermal and wave dynamics in electro-optic transducers that use a two-step scheme based on an intermediate frequency state in the THz range.
arXiv Detail & Related papers (2023-07-07T19:31:39Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Low-loss high-impedance circuit for quantum transduction between optical
and microwave photons [0.0]
Quantum transducers between microwave and optical photons are essential for long-distance quantum networks based on superconducting qubits.
An optically active self-assembled quantum dot molecule (QDM) is an attractive platform for the implementation of a quantum transducer.
We present a design of a QD-high impedance resonator device with a low microwave loss and an expected large single-microwave photon coupling strength of 100s of MHz.
arXiv Detail & Related papers (2021-12-09T18:31:13Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.