Kernel Bi-Linear Modeling for Reconstructing Data on Manifolds: The
Dynamic-MRI Case
- URL: http://arxiv.org/abs/2002.11885v1
- Date: Thu, 27 Feb 2020 02:42:08 GMT
- Title: Kernel Bi-Linear Modeling for Reconstructing Data on Manifolds: The
Dynamic-MRI Case
- Authors: Gaurav N.Shetty, Konstantinos Slavakis, Ukash Nakarmi, Gesualdo
Scutari, and Leslie Ying
- Abstract summary: A kernel-based framework is developed to fit the dynamic-(d)MRI-data recovery problem.
The proposed methodology uses no training data and employs no graph Laplacian matrix to penalize the optimization task.
The framework is validated on synthetically generated dMRI data, where comparisons against state-of-the-art schemes highlight the rich potential of the proposed approach in data-recovery problems.
- Score: 12.925252330672246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper establishes a kernel-based framework for reconstructing data on
manifolds, tailored to fit the dynamic-(d)MRI-data recovery problem. The
proposed methodology exploits simple tangent-space geometries of manifolds in
reproducing kernel Hilbert spaces and follows classical kernel-approximation
arguments to form the data-recovery task as a bi-linear inverse problem.
Departing from mainstream approaches, the proposed methodology uses no training
data, employs no graph Laplacian matrix to penalize the optimization task, uses
no costly (kernel) pre-imaging step to map feature points back to the input
space, and utilizes complex-valued kernel functions to account for k-space
data. The framework is validated on synthetically generated dMRI data, where
comparisons against state-of-the-art schemes highlight the rich potential of
the proposed approach in data-recovery problems.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Multilinear Kernel Regression and Imputation via Manifold Learning [5.482532589225551]
MultiL-KRIM builds on the intuitive concept of spaces to tangent and incorporates collaboration among point-cloud neighbors (regressors) directly into the data-modeling term of the loss function.
Two important application domains showcase the functionality of MultiL-KRIM: time-varying-graph-signal (TVGS) recovery, and reconstruction of highly accelerated dynamic-magnetic-resonance-imaging (dMRI) data.
arXiv Detail & Related papers (2024-02-06T02:50:42Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - A graph convolutional autoencoder approach to model order reduction for
parametrized PDEs [0.8192907805418583]
The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM)
We develop a non-intrusive and data-driven nonlinear reduction approach, exploiting GNNs to encode the reduced manifold and enable fast evaluations of parametrized PDEs.
arXiv Detail & Related papers (2023-05-15T12:01:22Z) - Multi-Linear Kernel Regression and Imputation in Data Manifolds [12.15802365851407]
This paper introduces an efficient multi-linear nonparametric approximation framework for data regression and imputation, and its application to dynamic magnetic-resonance imaging (dMRI)
Data features are assumed to reside in or close to a smooth manifold embedded in a kernel reproducing Hilbert space. Landmark points are identified to describe the point cloud of features by linear approximating patches which mimic the concept of tangent spaces to smooth.
The multi-linear model effects dimensionality reduction, enables efficient computations, and extracts data patterns and their geometry without any training data or additional information.
arXiv Detail & Related papers (2023-04-06T12:58:52Z) - Inverse Kernel Decomposition [3.066967635405937]
We propose a novel nonlinear dimensionality reduction method -- Inverse Kernel Decomposition (IKD)
IKD is based on an eigen-decomposition of the sample covariance matrix of data.
We use synthetic datasets and four real-world datasets to show that IKD is a better dimensionality reduction method than other eigen-decomposition-based methods.
arXiv Detail & Related papers (2022-11-11T02:14:29Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
Most existing manifold learning algorithms replace the original data with lower dimensional coordinates.
This article proposes a new methodology for addressing these problems, allowing the estimated manifold between fitted data points.
arXiv Detail & Related papers (2021-10-14T15:50:38Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
We propose a new Semi-Nonnegative Matrix Factorization method for 2-dimensional (2D) data, named TS-NMF.
It overcomes the drawback of existing methods that seriously damage the spatial information of the data by converting 2D data to vectors in a preprocessing step.
arXiv Detail & Related papers (2020-05-19T05:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.