A graph convolutional autoencoder approach to model order reduction for
parametrized PDEs
- URL: http://arxiv.org/abs/2305.08573v2
- Date: Tue, 7 Nov 2023 15:02:36 GMT
- Title: A graph convolutional autoencoder approach to model order reduction for
parametrized PDEs
- Authors: Federico Pichi, Beatriz Moya, and Jan S. Hesthaven
- Abstract summary: The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM)
We develop a non-intrusive and data-driven nonlinear reduction approach, exploiting GNNs to encode the reduced manifold and enable fast evaluations of parametrized PDEs.
- Score: 0.8192907805418583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The present work proposes a framework for nonlinear model order reduction
based on a Graph Convolutional Autoencoder (GCA-ROM). In the reduced order
modeling (ROM) context, one is interested in obtaining real-time and many-query
evaluations of parametric Partial Differential Equations (PDEs). Linear
techniques such as Proper Orthogonal Decomposition (POD) and Greedy algorithms
have been analyzed thoroughly, but they are more suitable when dealing with
linear and affine models showing a fast decay of the Kolmogorov n-width. On one
hand, the autoencoder architecture represents a nonlinear generalization of the
POD compression procedure, allowing one to encode the main information in a
latent set of variables while extracting their main features. On the other
hand, Graph Neural Networks (GNNs) constitute a natural framework for studying
PDE solutions defined on unstructured meshes. Here, we develop a non-intrusive
and data-driven nonlinear reduction approach, exploiting GNNs to encode the
reduced manifold and enable fast evaluations of parametrized PDEs. We show the
capabilities of the methodology for several models: linear/nonlinear and
scalar/vector problems with fast/slow decay in the physically and geometrically
parametrized setting. The main properties of our approach consist of (i) high
generalizability in the low-data regime even for complex regimes, (ii) physical
compliance with general unstructured grids, and (iii) exploitation of pooling
and un-pooling operations to learn from scattered data.
Related papers
- A model-constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization [0.0]
We develop a model-constrained discontinuous Galerkin Network (DGNet) approach to solve compressible Euler equations.
To validate the effectiveness, stability, and generalizability of our novel DGNet approach, we present numerical results for 1D and 2D compressible Euler equation problems.
arXiv Detail & Related papers (2024-09-27T01:13:38Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Nonlinear proper orthogonal decomposition for convection-dominated flows [0.0]
We propose an end-to-end Galerkin-free model combining autoencoders with long short-term memory networks for dynamics.
Our approach not only improves the accuracy, but also significantly reduces the computational cost of training and testing.
arXiv Detail & Related papers (2021-10-15T18:05:34Z) - Non-linear Independent Dual System (NIDS) for Discretization-independent
Surrogate Modeling over Complex Geometries [0.0]
Non-linear independent dual system (NIDS) is a deep learning surrogate model for discretization-independent, continuous representation of PDE solutions.
NIDS can be used for prediction over domains with complex, variable geometries and mesh topologies.
Test cases include a vehicle problem with complex geometry and data scarcity, enabled by a training method.
arXiv Detail & Related papers (2021-09-14T23:38:41Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Non-intrusive surrogate modeling for parametrized time-dependent PDEs
using convolutional autoencoders [0.0]
We present a non-intrusive surrogate modeling scheme based on machine learning for predictive modeling of complex, systems by parametrized timedependent PDEs.
We use a convolutional autoencoder in conjunction with a feed forward neural network to establish a low-cost and accurate mapping from problem's parametric space to its solution space.
arXiv Detail & Related papers (2021-01-14T11:34:58Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - A comprehensive deep learning-based approach to reduced order modeling
of nonlinear time-dependent parametrized PDEs [0.0]
We show how to construct a DL-ROM for both linear and nonlinear time-dependent parametrized PDEs.
Numerical results indicate that DL-ROMs whose dimension is equal to the intrinsic dimensionality of the PDE solutions manifold are able to approximate the solution of parametrized PDEs.
arXiv Detail & Related papers (2020-01-12T21:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.