論文の概要: Face Verification Using 60~GHz 802.11 waveforms
- arxiv url: http://arxiv.org/abs/2002.11965v2
- Date: Mon, 1 Jun 2020 06:52:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 09:17:28.578962
- Title: Face Verification Using 60~GHz 802.11 waveforms
- Title(参考訳): 60ghz 802.11波形による顔認証
- Authors: Eran Hof, Amichai Sanderovich, Evyatar Hemo
- Abstract要約: テストには200人の顔のデータセットが収集された。
予備研究は、手前の設定にオートエンコーダを応用するための有望な結果を示している。
- 参考スコア(独自算出の注目度): 2.294014185517203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Verification of an identity based on the human face radar signature in mmwave
is studied. The chipset for 802.11ad/y networking that is cable of operating in
a radar mode is used. A dataset with faces of 200 different persons was
collected for the testing. Our preliminary study shows promising results for
the application of autoencoder for the setup at hand.
- Abstract(参考訳): mmwaveにおける人間の顔レーダの署名に基づくアイデンティティの検証を行った。
レーダーモードで動作するケーブルである802.11ad/yネットワーク用チップセットを使用する。
テストには200人の顔のデータセットが収集された。
予備研究は,手前の設定にオートエンコーダを応用するための有望な結果を示す。
関連論文リスト
- Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - Hand gesture recognition using 802.11ad mmWave sensor in the mobile
device [2.5476515662939563]
スマートフォンにおける802.11ad 60GHz (mmWave) 技術を用いたAI支援手振り認識の実現可能性について検討する。
我々は、時間分割デュプレックス(TDD)によってレーダーセンシングと通信波形が共存できるプロトタイプシステムを構築した。
センシングデータを収集し、100ミリ秒以内にジェスチャーを予測する。
論文 参考訳(メタデータ) (2022-11-14T03:36:17Z) - mm-Wave Radar Hand Shape Classification Using Deformable Transformers [0.46007387171990594]
リアルタイム・ミリ波レーダを用いた静的手形分類アルゴリズムと実装を提案する。
この手法は60Ghzレーダをセンサ入力として使用し、低コストかつプライバシーに敏感なタッチレス制御技術にいくつかの応用を見出した。
論文 参考訳(メタデータ) (2022-10-24T09:56:11Z) - HuPR: A Benchmark for Human Pose Estimation Using Millimeter Wave Radar [30.51398364813315]
本稿では,ミリ波レーダを用いた人間のポーズ推定ベンチマーク「Human Pose with Millimeter Wave Radar (HuPR)」を紹介する。
このデータセットは、レーダに基づく人間のポーズ推定のクロスモダリティトレーニングのために、クロスキャリブレーションされたmmWaveレーダセンサとモノクラーRGBカメラを用いて作成される。
論文 参考訳(メタデータ) (2022-10-22T22:28:40Z) - Overhead-Free Blockage Detection and Precoding Through Physics-Based
Graph Neural Networks: LIDAR Data Meets Ray Tracing [58.73924499067486]
物理ベースグラフニューラルネットワーク(GNN)による光検出・測光(LIDAR)データの分類によりブロック検出を実現する
プリコーダ設計には、LIDARデータから得られた3D面にレイトレーシングを行うことにより、予備チャネル推定を行う。
数値シミュレーションにより、ブロック検出は95%精度で成功していることが示された。
論文 参考訳(メタデータ) (2022-09-15T15:04:55Z) - Vision Meets Wireless Positioning: Effective Person Re-identification
with Recurrent Context Propagation [120.18969251405485]
既存の人物再識別方法は、歩行者を捕獲する視覚センサーに依存している。
携帯電話は、無線測位信号の形で、WiFiや携帯電話ネットワークによって感知することができる。
本稿では,視覚データと無線位置決めデータの間で情報伝達を可能にする新しいコンテキスト伝搬モジュールを提案する。
論文 参考訳(メタデータ) (2020-08-10T14:19:15Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z) - Probabilistic Oriented Object Detection in Automotive Radar [8.281391209717103]
本稿では,レーダー物体検出のためのディープラーニングに基づくアルゴリズムを提案する。
我々は102544フレームの生レーダと同期LiDARデータを備えた新しいマルチモーダルデータセットを作成しました。
我々の最高性能レーダ検出モデルは、指向性IoU0.3で77.28%APを達成した。
論文 参考訳(メタデータ) (2020-04-11T05:29:32Z) - Gesture recognition with 60GHz 802.11 waveforms [2.294014185517203]
802.11個のad/y波形を用いたジェスチャー認識アプリケーションを開発した。
パケットのチャネル推定フィールドのGolayシーケンスに基づいて,スライダ制御の同時ジェスチャーとスイッチングのための2指ジェスチャーを検出する。
論文 参考訳(メタデータ) (2020-02-25T12:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。