論文の概要: Reinforcement Learning of Risk-Constrained Policies in Markov Decision
Processes
- arxiv url: http://arxiv.org/abs/2002.12086v1
- Date: Thu, 27 Feb 2020 13:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 07:29:17.963046
- Title: Reinforcement Learning of Risk-Constrained Policies in Markov Decision
Processes
- Title(参考訳): マルコフ決定過程におけるリスク制約政策の強化学習
- Authors: Tomas Brazdil, Krishnendu Chatterjee, Petr Novotny, Jiri Vahala
- Abstract要約: マルコフ決定プロセス(MDPs)は、確率的不確実性の存在下でのシーケンシャルな意思決定のためのデファクト・フレームワークである。
破滅的な結果が再帰する障害状態と相まって, 対価を割引したMDPについて検討する。
我々の主な貢献は、UDTのような探索とMDPとの学習的相互作用を組み合わせた効率的なリスク制約型プランニングアルゴリズムである。
- 参考スコア(独自算出の注目度): 5.081241420920605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Markov decision processes (MDPs) are the defacto frame-work for sequential
decision making in the presence ofstochastic uncertainty. A classical
optimization criterion forMDPs is to maximize the expected discounted-sum
pay-off, which ignores low probability catastrophic events withhighly negative
impact on the system. On the other hand,risk-averse policies require the
probability of undesirableevents to be below a given threshold, but they do not
accountfor optimization of the expected payoff. We consider MDPswith
discounted-sum payoff with failure states which repre-sent catastrophic
outcomes. The objective of risk-constrainedplanning is to maximize the expected
discounted-sum payoffamong risk-averse policies that ensure the probability to
en-counter a failure state is below a desired threshold. Our maincontribution
is an efficient risk-constrained planning algo-rithm that combines UCT-like
search with a predictor learnedthrough interaction with the MDP (in the style
of AlphaZero)and with a risk-constrained action selection via linear
pro-gramming. We demonstrate the effectiveness of our approachwith experiments
on classical MDPs from the literature, in-cluding benchmarks with an order of
10^6 states.
- Abstract(参考訳): マルコフ決定プロセス(MDPs)は、確率的不確実性の存在下でのシーケンシャルな意思決定のためのデファクト・フレームワークである。
古典的なMDPの最適化基準は、システムに非常に悪影響を及ぼす低確率の破滅的な事象を無視する、期待される割引済の支払いを最大化することである。
一方、リスク逆ポリシでは、望ましくない値が与えられた閾値を下回る確率が要求されるが、期待される支払の最適化は考慮されない。
破滅的な結果が再帰する障害状態と相まって, 対価を割引したMDPについて検討する。
リスク制約計画の目的は、障害状態が所望のしきい値を下回る確率を確保するために、期待される割引済ペイオフアポンリスクアバースポリシーを最大化することである。
我々の主な貢献は、CTライクな探索とMDP(AlphaZeroのスタイル)との予測学習と、線形プロ文法によるリスク制約された行動選択を組み合わせ、効率的なリスク制約型計画アルゴリズムである。
文献から古典的mdpに関する実験を行い,10^6状態のインクレーディングベンチマークを用いて,本手法の有効性を実証した。
関連論文リスト
- Model-Based Epistemic Variance of Values for Risk-Aware Policy
Optimization [63.32053223422317]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
特に、MDP上の分布によって誘導される値の分散を特徴付けることに焦点をあてる。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Risk-Averse MDPs under Reward Ambiguity [9.929659318167731]
本稿では,リスクと報酬のあいまいさの下で,マルコフ決定過程(MDP)の分布的に堅牢なリターンリスクモデルを提案する。
スケーラブルな一階述語アルゴリズムは大規模問題の解法として設計されている。
論文 参考訳(メタデータ) (2023-01-03T11:06:30Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
コンフォーマルなオフ政治予測は、新しい目標ポリシーの下で、結果に対する信頼できる予測間隔を出力することができる。
理論上の有限サンプル保証は、標準的な文脈的バンディットの設定を超える追加の仮定をすることなく提供する。
論文 参考訳(メタデータ) (2022-06-09T10:39:33Z) - Under-Approximating Expected Total Rewards in POMDPs [68.8204255655161]
我々は、部分的に観測可能なマルコフ決定プロセス(POMDP)において、ゴール状態に達するための最適な総報酬を考える。
我々は、MILP(mixed-integer linear programming)を用いて、そのような最小限の確率シフトを見つけ、実験により、我々の手法がかなりうまく拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-01-21T16:43:03Z) - Risk-Averse Decision Making Under Uncertainty [18.467950783426947]
不確実性条件下での意思決定は、マルコフ決定プロセス(MDP)または部分的に観測可能なMDP(POMDP)を介して記述することができる。
本稿では、動的コヒーレントリスク対策の観点から、MDPとPMDPのポリシーを目的と制約で設計する問題について考察する。
論文 参考訳(メタデータ) (2021-09-09T07:52:35Z) - Risk-Averse Stochastic Shortest Path Planning [25.987787625028204]
最適、定常、マルコフの方針が存在することを示し、特別なベルマン方程式を用いて見出すことができる。
ローバーナビゲーションMDPを用いて,条件値値リスク(CVaR)とエントロピー値値リスク(EVaR)のコヒーレントリスク尺度を用いて提案手法を説明する。
論文 参考訳(メタデータ) (2021-03-26T20:49:14Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
本研究は,リスクに敏感な深層強化学習を,分散リスク基準による平均報酬条件下で研究する試みである。
本稿では,ポリシー,ラグランジュ乗算器,フェンシェル双対変数を反復的かつ効率的に更新するアクタ批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T05:02:26Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
片側予測(OSP)に基づく緩和は、実際に関係する高目標精度体制において、ほぼ最適カバレッジが得られるSCスキームをもたらす。
理論的には,SCとOSPのバウンダリ一般化を導出し,その手法が小さな誤差レベルでのカバレッジにおいて,技術手法の状態を強く上回ることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:14:27Z) - Cautious Reinforcement Learning via Distributional Risk in the Dual
Domain [45.17200683056563]
マルコフ決定過程(MDP)によって定義される強化学習問題において,状態と行動空間が可算有限である場合のリスク感受性ポリシーの推定について検討する。
本稿では,強化学習の線形プログラミング(LP)の2つの目的に付加されるペナルティ関数として,新たなリスク定義を提案する。
論文 参考訳(メタデータ) (2020-02-27T23:18:04Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
本稿では,関数近似を用いたバッチデータ強化学習の統計的理論について検討する。
記録履歴から新たな対象政策の累積値を推定するオフ・ポリティクス評価問題を考察する。
論文 参考訳(メタデータ) (2020-02-21T19:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。