A survey on dragonfly algorithm and its applications in engineering
- URL: http://arxiv.org/abs/2002.12126v3
- Date: Sat, 28 Aug 2021 07:54:25 GMT
- Title: A survey on dragonfly algorithm and its applications in engineering
- Authors: Chnoor M. Rahman, Tarik A. Rashid, Abeer Alsadoon, Nebojsa Bacanin,
Polla Fattah, Seyedali Mirjalili
- Abstract summary: The dragonfly algorithm was developed in 2016. It is one of the algorithms used by researchers to optimize an extensive series of uses and applications in various areas.
This work addressed the robustness of the method to solve real-world optimization issues, and its deficiency to improve complex optimization problems.
- Score: 29.190512851078218
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The dragonfly algorithm was developed in 2016. It is one of the algorithms
used by researchers to optimize an extensive series of uses and applications in
various areas. At times, it offers superior performance compared to the most
well-known optimization techniques. However, this algorithm faces several
difficulties when it is utilized to enhance complex optimization problems. This
work addressed the robustness of the method to solve real-world optimization
issues, and its deficiency to improve complex optimization problems. This
review paper shows a comprehensive investigation of the dragonfly algorithm in
the engineering area. First, an overview of the algorithm is discussed.
Besides, we also examined the modifications of the algorithm. The merged forms
of this algorithm with different techniques and the modifications that have
been done to make the algorithm perform better are addressed. Additionally, a
survey on applications in the engineering area that used the dragonfly
algorithm is offered. The utilized engineering applications are the
applications in the field of mechanical engineering problems, electrical
engineering problems, optimal parameters, economic load dispatch, and loss
reduction. The algorithm is tested and evaluated against particle swarm
optimization algorithm and firefly algorithm. To evaluate the ability of the
dragonfly algorithm and other participated algorithms a set of traditional
benchmarks (TF1-TF23) were utilized. Moreover, to examine the ability of the
algorithm to optimize large-scale optimization problems CEC-C2019 benchmarks
were utilized. A comparison is made between the algorithm and other
metaheuristic techniques to show its ability to enhance various problems.
Related papers
- BMR and BWR: Two simple metaphor-free optimization algorithms for solving real-life non-convex constrained and unconstrained problems [0.5755004576310334]
Two simple yet powerful optimization algorithms, named the Best-MeanRandom (BMR) and Best-Worst-Random (BWR) algorithms, are developed and presented in this paper.
arXiv Detail & Related papers (2024-07-15T18:11:47Z) - A Generalized Evolutionary Metaheuristic (GEM) Algorithm for Engineering Optimization [1.6589012298747952]
A major trend in recent years is the use of nature-inspired metaheustic algorithms (NIMA)
There are over 540 algorithms in the literature, and there is no unified framework to understand the search mechanisms of different algorithms.
We propose a generalized evolutionary metaheuristic algorithm to unify more than 20 different algorithms.
arXiv Detail & Related papers (2024-07-02T09:55:15Z) - Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
An automated sizing approach for analog circuits is presented in this paper.
A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function.
The algorithms are tuned and modified to converge to a better optimal solution.
arXiv Detail & Related papers (2023-10-19T03:26:36Z) - GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond [4.939986309170004]
The GOOSE algorithm is benchmarked on 19 well-known test functions.
The proposed algorithm is tested on 10 modern benchmark functions.
The achieved findings attest to the proposed algorithm's superior performance.
arXiv Detail & Related papers (2023-07-19T19:14:25Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Hybrid ACO-CI Algorithm for Beam Design problems [0.4397520291340694]
A novel hybrid version of the Ant colony optimization (ACO) method is developed using the sample space reduction technique of the Cohort Intelligence (CI) algorithm.
The proposed work could be investigate for real world applications encompassing domains of engineering, and health care problems.
arXiv Detail & Related papers (2023-03-29T04:37:14Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - An Accelerated Variance-Reduced Conditional Gradient Sliding Algorithm
for First-order and Zeroth-order Optimization [111.24899593052851]
Conditional gradient algorithm (also known as the Frank-Wolfe algorithm) has recently regained popularity in the machine learning community.
ARCS is the first zeroth-order conditional gradient sliding type algorithms solving convex problems in zeroth-order optimization.
In first-order optimization, the convergence results of ARCS substantially outperform previous algorithms in terms of the number of gradient query oracle.
arXiv Detail & Related papers (2021-09-18T07:08:11Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.