Optimization of Graph Total Variation via Active-Set-based Combinatorial
Reconditioning
- URL: http://arxiv.org/abs/2002.12236v1
- Date: Thu, 27 Feb 2020 16:33:09 GMT
- Title: Optimization of Graph Total Variation via Active-Set-based Combinatorial
Reconditioning
- Authors: Zhenzhang Ye, Thomas M\"ollenhoff, Tao Wu, Daniel Cremers
- Abstract summary: We propose a novel adaptive preconditioning strategy for proximal algorithms on this problem class.
We show that nested-forest decomposition of the inactive edges yields a guaranteed local linear convergence rate.
Our results suggest that local convergence analysis can serve as a guideline for selecting variable metrics in proximal algorithms.
- Score: 48.42916680063503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured convex optimization on weighted graphs finds numerous applications
in machine learning and computer vision. In this work, we propose a novel
adaptive preconditioning strategy for proximal algorithms on this problem
class. Our preconditioner is driven by a sharp analysis of the local linear
convergence rate depending on the "active set" at the current iterate. We show
that nested-forest decomposition of the inactive edges yields a guaranteed
local linear convergence rate. Further, we propose a practical greedy heuristic
which realizes such nested decompositions and show in several numerical
experiments that our reconditioning strategy, when applied to proximal gradient
or primal-dual hybrid gradient algorithm, achieves competitive performances.
Our results suggest that local convergence analysis can serve as a guideline
for selecting variable metrics in proximal algorithms.
Related papers
- Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
We address the problem of verifying neural networks against geometric transformations of the input image, including rotation, scaling, shearing, and translation.
The proposed method computes provably sound piecewise linear constraints for the pixel values by using sampling and linear approximations in combination with branch-and-bound Lipschitz.
We show that our proposed implementation resolves up to 32% more verification cases than present approaches.
arXiv Detail & Related papers (2024-08-23T15:02:09Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - The Novel Adaptive Fractional Order Gradient Decent Algorithms Design
via Robust Control [5.5491171448159715]
The vanilla fractional order descent may oscillatively converge to a region around the global minimum instead of converging to the exact minimum point, or even diverge, in the case where the objective function is strongly convex.
To address this problem, a novel adaptive fractional order descent (AFDOG) and a novel fractional descent (AFOAGD) method are proposed in this paper.
arXiv Detail & Related papers (2023-03-08T02:03:30Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - The Curse of Unrolling: Rate of Differentiating Through Optimization [35.327233435055305]
Un differentiation approximates the solution using an iterative solver and differentiates it through the computational path.
We show that we can either 1) choose a large learning rate leading to a fast convergence but accept that the algorithm may have an arbitrarily long burn-in phase or 2) choose a smaller learning rate leading to an immediate but slower convergence.
arXiv Detail & Related papers (2022-09-27T09:27:29Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Asymptotic study of stochastic adaptive algorithm in non-convex
landscape [2.1320960069210484]
This paper studies some assumption properties of adaptive algorithms widely used in optimization and machine learning.
Among them Adagrad and Rmsprop, which are involved in most of the blackbox deep learning algorithms.
arXiv Detail & Related papers (2020-12-10T12:54:45Z) - GTAdam: Gradient Tracking with Adaptive Momentum for Distributed Online
Optimization [4.103281325880475]
This paper deals with a network of computing agents aiming to solve an online optimization problem in a distributed fashion, by means of local computation and communication, without any central coordinator.
We propose the gradient tracking with adaptive momentum estimation (GTAdam) distributed algorithm, which combines a gradient tracking mechanism with first and second order momentum estimates of the gradient.
In these numerical experiments from multi-agent learning, GTAdam outperforms state-of-the-art distributed optimization methods.
arXiv Detail & Related papers (2020-09-03T15:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.