The Novel Adaptive Fractional Order Gradient Decent Algorithms Design
via Robust Control
- URL: http://arxiv.org/abs/2303.04328v1
- Date: Wed, 8 Mar 2023 02:03:30 GMT
- Title: The Novel Adaptive Fractional Order Gradient Decent Algorithms Design
via Robust Control
- Authors: Jiaxu Liu and Song Chen and Shengze Cai and Chao Xu
- Abstract summary: The vanilla fractional order descent may oscillatively converge to a region around the global minimum instead of converging to the exact minimum point, or even diverge, in the case where the objective function is strongly convex.
To address this problem, a novel adaptive fractional order descent (AFDOG) and a novel fractional descent (AFOAGD) method are proposed in this paper.
- Score: 5.5491171448159715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vanilla fractional order gradient descent may oscillatively converge to a
region around the global minimum instead of converging to the exact minimum
point, or even diverge, in the case where the objective function is strongly
convex. To address this problem, a novel adaptive fractional order gradient
descent (AFOGD) method and a novel adaptive fractional order accelerated
gradient descent (AFOAGD) method are proposed in this paper. Inspired by the
quadratic constraints and Lyapunov stability analysis from robust control
theory, we establish a linear matrix inequality to analyse the convergence of
our proposed algorithms. We prove that the proposed algorithms can achieve
R-linear convergence when the objective function is $\textbf{L-}$smooth and
$\textbf{m-}$strongly-convex. Several numerical simulations are demonstrated to
verify the effectiveness and superiority of our proposed algorithms.
Related papers
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - Robust empirical risk minimization via Newton's method [9.797319790710711]
A new variant of Newton's method for empirical risk minimization is studied.
The gradient and Hessian of the objective function are replaced by robust estimators.
An algorithm for obtaining robust Newton directions based on the conjugate gradient method is also proposed.
arXiv Detail & Related papers (2023-01-30T18:54:54Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
We analyze algorithms for zeroth-order entropy composite objectives, focusing on dependence on dimensionality.
This is achieved by exploiting low dimensional structure of the decision set using the mirror descent method with an estimation alike function.
To improve the gradient, we replace the classic sampling method based on Rademacher and show that the mini-batch method copes with non-Eucli geometry.
arXiv Detail & Related papers (2022-08-09T07:36:25Z) - Constrained and Composite Optimization via Adaptive Sampling Methods [3.4219044933964944]
The motivation for this paper stems from the desire to develop an adaptive sampling method for solving constrained optimization problems.
The method proposed in this paper is a proximal gradient method that can also be applied to the composite optimization problem min f(x) + h(x), where f is convex (but not necessarily differentiable)
arXiv Detail & Related papers (2020-12-31T02:50:39Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
We present a new model of a general convex or non objective machine machine objectives.
We propose an algorithm that solves a constraint with gradually relaxed point levels of each subproblem.
We demonstrate the effectiveness of our new numerical scale problems.
arXiv Detail & Related papers (2020-10-23T05:24:05Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Optimization of Graph Total Variation via Active-Set-based Combinatorial
Reconditioning [48.42916680063503]
We propose a novel adaptive preconditioning strategy for proximal algorithms on this problem class.
We show that nested-forest decomposition of the inactive edges yields a guaranteed local linear convergence rate.
Our results suggest that local convergence analysis can serve as a guideline for selecting variable metrics in proximal algorithms.
arXiv Detail & Related papers (2020-02-27T16:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.