2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis
Classification
- URL: http://arxiv.org/abs/2002.12314v1
- Date: Thu, 27 Feb 2020 18:32:52 GMT
- Title: 2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis
Classification
- Authors: Yu Zhang, Xiaoqin Wang, Hunter Blanton, Gongbo Liang, Xin Xing, and
Nathan Jacobs
- Abstract summary: Key challenges in developing automated methods for classification are handling the variable number of slices and retaining slice-to-slice changes.
We propose a novel deep 2D convolutional neural network (CNN) architecture for classification that simultaneously overcomes both challenges.
Our approach operates on the full volume, regardless of the number of slices, and allows the use of pre-trained 2D CNNs for feature extraction.
- Score: 20.245580301060418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated methods for breast cancer detection have focused on 2D mammography
and have largely ignored 3D digital breast tomosynthesis (DBT), which is
frequently used in clinical practice. The two key challenges in developing
automated methods for DBT classification are handling the variable number of
slices and retaining slice-to-slice changes. We propose a novel deep 2D
convolutional neural network (CNN) architecture for DBT classification that
simultaneously overcomes both challenges. Our approach operates on the full
volume, regardless of the number of slices, and allows the use of pre-trained
2D CNNs for feature extraction, which is important given the limited amount of
annotated training data. In an extensive evaluation on a real-world clinical
dataset, our approach achieves 0.854 auROC, which is 28.80% higher than
approaches based on 3D CNNs. We also find that these improvements are stable
across a range of model configurations.
Related papers
- Self-supervised learning via inter-modal reconstruction and feature
projection networks for label-efficient 3D-to-2D segmentation [4.5206601127476445]
We propose a novel convolutional neural network (CNN) and self-supervised learning (SSL) method for label-efficient 3D-to-2D segmentation.
Results on different datasets demonstrate that the proposed CNN significantly improves the state of the art in scenarios with limited labeled data by up to 8% in Dice score.
arXiv Detail & Related papers (2023-07-06T14:16:25Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
We propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition.
Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics are decomposed to 2D slices according to neighboring voxel positions.
Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps.
Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third dimension unprocessed by the 2D CNN model.
arXiv Detail & Related papers (2022-11-21T15:22:59Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19.
Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint.
Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume.
arXiv Detail & Related papers (2022-11-10T13:11:21Z) - Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation [4.150096314396549]
Deep convolutional neural network (DCNNs) has obtained tremendous success in 2D and 3D medical image segmentation.
We propose a novel dense-sparse training flow from a data perspective, in which, densely adjacent slices and sparsely adjacent slices are extracted as inputs for regularizing DCNNs.
We also design a 2.5D light-weight nnU-Net from a network perspective, in which, depthwise separable convolutions are adopted to improve the efficiency.
arXiv Detail & Related papers (2021-08-15T15:29:48Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
We propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges.
The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes.
We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset.
arXiv Detail & Related papers (2020-10-29T15:39:19Z) - Uniformizing Techniques to Process CT scans with 3D CNNs for
Tuberculosis Prediction [5.270882613122642]
A common approach to medical image analysis on volumetric data uses deep 2D convolutional neural networks (CNNs)
dealing with the individual slices independently in 2D CNNs deliberately discards the depth information which results in poor performance for the intended task.
We evaluate a set of volume uniformizing methods to address the aforementioned issues.
We report 73% area under curve (AUC) and binary classification accuracy (ACC) of 67.5% on the test set beating all methods which leveraged only image information.
arXiv Detail & Related papers (2020-07-26T21:53:47Z) - Single-view 2D CNNs with Fully Automatic Non-nodule Categorization for
False Positive Reduction in Pulmonary Nodule Detection [29.597929819870203]
In pulmonary nodule detection, the first stage, candidate detection, aims to detect suspicious pulmonary nodules.
This task is challenging due to 1) the imbalance between the numbers of nodules and non-nodules and 2) the intra-class diversity of non-nodules.
We propose a novel framework using the ensemble of 2D CNNs using single views, which outperforms existing 3D CNN-based methods.
arXiv Detail & Related papers (2020-03-09T23:18:52Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks.
Applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models.
In this work, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D.
As a result, 2D CNN networks can also be used to learn volumetric information.
arXiv Detail & Related papers (2020-02-11T08:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.