Single-view 2D CNNs with Fully Automatic Non-nodule Categorization for
False Positive Reduction in Pulmonary Nodule Detection
- URL: http://arxiv.org/abs/2003.04454v1
- Date: Mon, 9 Mar 2020 23:18:52 GMT
- Title: Single-view 2D CNNs with Fully Automatic Non-nodule Categorization for
False Positive Reduction in Pulmonary Nodule Detection
- Authors: Hyunjun Eun, Daeyeong Kim, Chanho Jung, Changick Kim
- Abstract summary: In pulmonary nodule detection, the first stage, candidate detection, aims to detect suspicious pulmonary nodules.
This task is challenging due to 1) the imbalance between the numbers of nodules and non-nodules and 2) the intra-class diversity of non-nodules.
We propose a novel framework using the ensemble of 2D CNNs using single views, which outperforms existing 3D CNN-based methods.
- Score: 29.597929819870203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background and Objective: In pulmonary nodule detection, the first stage,
candidate detection, aims to detect suspicious pulmonary nodules. However,
detected candidates include many false positives and thus in the following
stage, false positive reduction, such false positives are reliably reduced.
Note that this task is challenging due to 1) the imbalance between the numbers
of nodules and non-nodules and 2) the intra-class diversity of non-nodules.
Although techniques using 3D convolutional neural networks (CNNs) have shown
promising performance, they suffer from high computational complexity which
hinders constructing deep networks. To efficiently address these problems, we
propose a novel framework using the ensemble of 2D CNNs using single views,
which outperforms existing 3D CNN-based methods.
Methods: Our ensemble of 2D CNNs utilizes single-view 2D patches to improve
both computational and memory efficiency compared to previous techniques
exploiting 3D CNNs. We first categorize non-nodules on the basis of features
encoded by an autoencoder. Then, all 2D CNNs are trained by using the same
nodule samples, but with different types of non-nodules. By extending the
learning capability, this training scheme resolves difficulties of extracting
representative features from non-nodules with large appearance variations. Note
that, instead of manual categorization requiring the heavy workload of
radiologists, we propose to automatically categorize non-nodules based on the
autoencoder and k-means clustering.
Related papers
- Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19.
Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint.
Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume.
arXiv Detail & Related papers (2022-11-10T13:11:21Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - Application of 2-D Convolutional Neural Networks for Damage Detection in
Steel Frame Structures [0.0]
We present an application of 2-D convolutional neural networks (2-D CNNs) designed to perform both feature extraction and classification stages.
The method uses a network of lighted CNNs instead of deep and takes raw acceleration signals as input.
arXiv Detail & Related papers (2021-10-29T16:29:31Z) - Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation [4.150096314396549]
Deep convolutional neural network (DCNNs) has obtained tremendous success in 2D and 3D medical image segmentation.
We propose a novel dense-sparse training flow from a data perspective, in which, densely adjacent slices and sparsely adjacent slices are extracted as inputs for regularizing DCNNs.
We also design a 2.5D light-weight nnU-Net from a network perspective, in which, depthwise separable convolutions are adopted to improve the efficiency.
arXiv Detail & Related papers (2021-08-15T15:29:48Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
We present our system for the RSNA Intracranial Hemorrhage Detection challenge.
The proposed system is based on a lightweight deep neural network architecture composed of a convolutional neural network (CNN)
We report a weighted mean log loss of 0.04989 on the final test set, which places us in the top 30 ranking (2%) from a total of 1345 participants.
arXiv Detail & Related papers (2020-08-01T17:28:25Z) - Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance
Disparity Estimation [51.17232267143098]
We propose a novel system named Disp R-CNN for 3D object detection from stereo images.
We use a statistical shape model to generate dense disparity pseudo-ground-truth without the need of LiDAR point clouds.
Experiments on the KITTI dataset show that, even when LiDAR ground-truth is not available at training time, Disp R-CNN achieves competitive performance and outperforms previous state-of-the-art methods by 20% in terms of average precision.
arXiv Detail & Related papers (2020-04-07T17:48:45Z) - 2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis
Classification [20.245580301060418]
Key challenges in developing automated methods for classification are handling the variable number of slices and retaining slice-to-slice changes.
We propose a novel deep 2D convolutional neural network (CNN) architecture for classification that simultaneously overcomes both challenges.
Our approach operates on the full volume, regardless of the number of slices, and allows the use of pre-trained 2D CNNs for feature extraction.
arXiv Detail & Related papers (2020-02-27T18:32:52Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks.
Applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models.
In this work, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D.
As a result, 2D CNN networks can also be used to learn volumetric information.
arXiv Detail & Related papers (2020-02-11T08:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.