論文の概要: Cognitively-Inspired Model for Incremental Learning Using a Few Examples
- arxiv url: http://arxiv.org/abs/2002.12411v3
- Date: Thu, 30 Jul 2020 06:55:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 07:10:35.959496
- Title: Cognitively-Inspired Model for Incremental Learning Using a Few Examples
- Title(参考訳): 数例を用いたインクリメンタルラーニングの認知モデル
- Authors: Ali Ayub and Alan Wagner
- Abstract要約: 増分学習は、異なるクラスに分離されたデータのストリームから連続的に学習する分類器の開発を試みる。
ディープラーニングアプローチは、クラスを漸進的に学習する際の破滅的な忘れ込みに悩まされる一方、ほとんどのインクリメンタル学習アプローチは、クラス毎に大量のトレーニングデータを必要とします。
本研究では,海馬と新皮質の概念学習モデルから着想を得た新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 11.193504036335503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incremental learning attempts to develop a classifier which learns
continuously from a stream of data segregated into different classes. Deep
learning approaches suffer from catastrophic forgetting when learning classes
incrementally, while most incremental learning approaches require a large
amount of training data per class. We examine the problem of incremental
learning using only a few training examples, referred to as Few-Shot
Incremental Learning (FSIL). To solve this problem, we propose a novel approach
inspired by the concept learning model of the hippocampus and the neocortex
that represents each image class as centroids and does not suffer from
catastrophic forgetting. We evaluate our approach on three class-incremental
learning benchmarks: Caltech-101, CUBS-200-2011 and CIFAR-100 for incremental
and few-shot incremental learning and show that our approach achieves
state-of-the-art results in terms of classification accuracy over all learned
classes.
- Abstract(参考訳): 増分学習は、異なるクラスに分離されたデータのストリームから連続的に学習する分類器の開発を試みる。
ディープラーニングのアプローチは、授業を漸進的に学習するときの破滅的な忘れに苦しむ一方で、ほとんどのインクリメンタルな学習アプローチは、クラスごとに大量のトレーニングデータを必要とする。
本稿では,Few-Shot Incremental Learning (FSIL) と呼ばれるいくつかの学習例を用いて,段階的学習の問題を検討する。
そこで本研究では,海馬と新皮質の概念学習モデルから着想を得た新しいアプローチを提案する。
我々は,Caltech-101,CUBS-200-2011,CIFAR-100の3つのクラス増分学習ベンチマークに対するアプローチを評価する。
関連論文リスト
- Cross-Class Feature Augmentation for Class Incremental Learning [45.91253737682168]
本稿では,敵対的攻撃を動機とした機能強化手法を取り入れた新しいクラスインクリメンタルラーニング手法を提案する。
提案手法は,任意の対象クラスの特徴を増大させるため,クラスインクリメンタルラーニングにおける従来の知識を活用するためのユニークな視点を持つ。
提案手法は,様々なシナリオにおいて,既存の段階的学習手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-04-04T15:48:09Z) - SLCA: Slow Learner with Classifier Alignment for Continual Learning on a
Pre-trained Model [73.80068155830708]
予備学習モデル(CLPM)を用いた連続学習のための広範囲な解析法を提案する。
Slow Learner with Alignment (SLCA) というシンプルなアプローチを提案する。
さまざまなシナリオにおいて、私たちの提案はCLPMの大幅な改善を提供します。
論文 参考訳(メタデータ) (2023-03-09T08:57:01Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
現在のディープラーニングモデルは、新しいクラスを学ぶ際に古い知識を破滅的に忘れることによって特徴づけられる。
人間の脳における新しい知識の学習プロセスに着想を得て,連続学習のためのベイズ生成モデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:41:51Z) - Improving Feature Generalizability with Multitask Learning in Class
Incremental Learning [12.632121107536843]
キーワードスポッティングのような多くのディープラーニングアプリケーションは、クラスインクリメンタルラーニング(CIL)と呼ばれる新しい概念(クラス)を時間とともに組み込む必要がある。
CILの最大の課題は、破滅的な忘れ、すなわち、新しいタスクを学習しながら可能な限り多くの古い知識を保存することである。
本稿では,基本モデルトレーニング中のマルチタスク学習による特徴一般化性の向上を提案する。
提案手法は,平均漸進的学習精度を最大5.5%向上させ,時間とともにより信頼性が高く正確なキーワードスポッティングを可能にする。
論文 参考訳(メタデータ) (2022-04-26T07:47:54Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot Class-Incremental Learning(FSCIL)は、いくつかのデータポイントから新しい概念を継続的に学習できる機械学習アルゴリズムの設計を目指している。
難点は、新しいクラスからの限られたデータが、重大な過度な問題を引き起こすだけでなく、破滅的な忘れの問題も悪化させることにある。
我々は,適応のための分類器間のコンテキスト情報を伝達するグラフモデルを用いた連続進化型cif(cec)を提案する。
論文 参考訳(メタデータ) (2021-04-07T10:54:51Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
現在の最先端のインクリメンタル学習手法は、従来の分類ネットワークにおける破滅的な忘れ方問題に取り組む。
ゼロショット変換クラス増分法(ZSTCI)と呼ばれる新しい組込みネットワークのクラス増分法を提案する。
さらに、ZSTCIを既存の正規化ベースのインクリメンタル学習手法と組み合わせることで、組み込みネットワークの性能をより向上させることができる。
論文 参考訳(メタデータ) (2020-12-31T08:21:37Z) - Class-incremental learning: survey and performance evaluation on image
classification [38.27344435075399]
増分学習は、新しいデータの到着時にスクラッチから再トレーニングする必要をなくし、効率的なリソース使用を可能にする。
漸進的な学習の最大の課題は破滅的な忘れことであり、これは新しいタスクを学習した後、以前に学習したタスクのパフォーマンスが急落したことを指す。
近年,学習者がタスクIDを使わずに,過去のタスクで見られた全てのクラス間での推論時間において,学習者が識別しなければならないクラス増分学習へのシフトが見られた。
論文 参考訳(メタデータ) (2020-10-28T23:28:15Z) - Few-Shot Class-Incremental Learning [68.75462849428196]
本稿では,FSCIL問題に焦点をあてる。
FSCIL は CNN モデルに対して,学習済みのクラスを忘れることなく,ラベル付きサンプルのごく少数から新たなクラスを漸進的に学習することを求めている。
我々は,異なるクラスで形成される特徴多様体のトポロジーを学習し,保存するニューラルネットワーク(NG)ネットワークを用いて,知識を表現する。
論文 参考訳(メタデータ) (2020-04-23T03:38:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。