論文の概要: Distributionally Robust Chance Constrained Programming with Generative
Adversarial Networks (GANs)
- arxiv url: http://arxiv.org/abs/2002.12486v1
- Date: Fri, 28 Feb 2020 00:05:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 01:45:36.222108
- Title: Distributionally Robust Chance Constrained Programming with Generative
Adversarial Networks (GANs)
- Title(参考訳): GAN(Generative Adversarial Networks)を用いた分散ロバストチャンス制約型プログラミング
- Authors: Shipu Zhao, Fengqi You
- Abstract要約: GAN(Generative Adversarial Network)をベースとしたデータ駆動型分散ロバストな制約付きプログラミングフレームワークを提案する。
非パラメトリックかつ教師なしの方法で、歴史的データから分布情報を完全抽出するために、GANを適用する。
提案手法は需要不確実性の下でサプライチェーン最適化に適用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel deep learning based data-driven optimization
method. A novel generative adversarial network (GAN) based data-driven
distributionally robust chance constrained programming framework is proposed.
GAN is applied to fully extract distributional information from historical data
in a nonparametric and unsupervised way without a priori approximation or
assumption. Since GAN utilizes deep neural networks, complicated data
distributions and modes can be learned, and it can model uncertainty
efficiently and accurately. Distributionally robust chance constrained
programming takes into consideration ambiguous probability distributions of
uncertain parameters. To tackle the computational challenges, sample average
approximation method is adopted, and the required data samples are generated by
GAN in an end-to-end way through the differentiable networks. The proposed
framework is then applied to supply chain optimization under demand
uncertainty. The applicability of the proposed approach is illustrated through
a county-level case study of a spatially explicit biofuel supply chain in
Illinois.
- Abstract(参考訳): 本稿では,ディープラーニングに基づくデータ駆動最適化手法を提案する。
GAN(Generative Adversarial Network)に基づくデータ駆動型分散ロバストな制約付きプログラミングフレームワークを提案する。
GANは、事前近似や仮定なしに、非パラメトリックで教師なしの方法で、歴史的データから分布情報を完全抽出するために適用される。
GANはディープニューラルネットワークを利用するため、複雑なデータ分布とモードを学習することができ、不確実性を効率的に正確にモデル化することができる。
分布的ロバストな確率制約付きプログラミングは不確定パラメータの曖昧な確率分布を考慮する。
計算上の課題に取り組むために,サンプル平均近似法が採用され,ganによって,微分可能ネットワークを介してエンドツーエンドで必要なデータサンプルが生成される。
提案手法は需要の不確実性下でサプライチェーン最適化に適用される。
提案手法の適用性は、イリノイ州の空間的に明示されたバイオ燃料サプライチェーンの郡レベルでのケーススタディで示される。
関連論文リスト
- Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
本稿では,ニューラルネットワークによる安定確率分布の伝播手法を提案する。
提案手法は局所線形化に基づいており,ReLU非線型性に対する全変動距離の近似値として最適であることを示す。
論文 参考訳(メタデータ) (2024-02-13T09:40:19Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
我々は、潜在的に破損したデータから一般的な離散ベイズネットワークの正確なスケルトンを学習する問題を考察する。
本稿では,有界ワッサーシュタイン距離(KL)における分布群に対する最も有害なリスクを,経験的分布へのKL分散を最適化することを提案する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
論文 参考訳(メタデータ) (2023-11-10T15:33:19Z) - Estimating Regression Predictive Distributions with Sample Networks [17.935136717050543]
モデル不確実性に対する一般的なアプローチは、パラメトリック分布を選択し、最大推定を用いてデータに適合させることである。
選択されたパラメトリック形式は、データ生成分布に不適合であり、信頼できない不確実性推定をもたらす。
出力分布にパラメトリック形式を指定することを避けるため,不確実性をモデル化するためのフレキシブルでスケーラブルなアーキテクチャであるSampleNetを提案する。
論文 参考訳(メタデータ) (2022-11-24T17:23:29Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
ソースフリードメイン適応(SFDA)は、事前訓練されたソースモデルのみを使用することで、未ラベルのターゲットデータセットに分類器を適応させることを目的としている。
本稿では、ソースモデル予測の不確実性を定量化し、ターゲット適応の導出に利用することを提案する。
論文 参考訳(メタデータ) (2022-08-16T08:03:30Z) - Data-Driven Approximations of Chance Constrained Programs in
Nonstationary Environments [3.126118485851773]
確率制約プログラムのサンプル平均近似(SAA)について検討する。
この問題の非定常変種を考えると、ランダムサンプルは逐次的に独立に描画されると仮定される。
本稿では,データ生成分布列と実確率制約分布との間のワッサーシュタイン距離の情報を利用した,ロバストなSAA手法を提案する。
論文 参考訳(メタデータ) (2022-05-08T01:01:57Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty-Aware Deep Classifiers using Generative Models [7.486679152591502]
ディープニューラルネットワークは、しばしば、彼らが知らないことについて無知であり、インフォームド予測を行うときに過信する。
最近のアプローチでは、クラス境界に近いデータサンプルやトレーニング分布の外側から、モデルに高い不確実性を出力するようにトレーニングすることで、不確実性を直接定量化している。
本研究では,アレータ性およびてんかん性不確実性の両方を表現し,決定境界と分布外領域を識別できる新しいニューラルネットワークモデルを構築した。
論文 参考訳(メタデータ) (2020-06-07T15:38:35Z) - Distribution Approximation and Statistical Estimation Guarantees of
Generative Adversarial Networks [82.61546580149427]
GAN(Generative Adversarial Networks)は教師なし学習において大きな成功を収めている。
本稿では,H'older空間における密度データ分布推定のためのGANの近似と統計的保証を提供する。
論文 参考訳(メタデータ) (2020-02-10T16:47:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。