論文の概要: Distributionally Robust Skeleton Learning of Discrete Bayesian Networks
- arxiv url: http://arxiv.org/abs/2311.06117v1
- Date: Fri, 10 Nov 2023 15:33:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 14:54:03.596907
- Title: Distributionally Robust Skeleton Learning of Discrete Bayesian Networks
- Title(参考訳): 離散ベイズネットワークの分布的ロバストスケルトン学習
- Authors: Yeshu Li and Brian D. Ziebart
- Abstract要約: 我々は、潜在的に破損したデータから一般的な離散ベイズネットワークの正確なスケルトンを学習する問題を考察する。
本稿では,有界ワッサーシュタイン距離(KL)における分布群に対する最も有害なリスクを,経験的分布へのKL分散を最適化することを提案する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
- 参考スコア(独自算出の注目度): 9.46389554092506
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We consider the problem of learning the exact skeleton of general discrete
Bayesian networks from potentially corrupted data. Building on distributionally
robust optimization and a regression approach, we propose to optimize the most
adverse risk over a family of distributions within bounded Wasserstein distance
or KL divergence to the empirical distribution. The worst-case risk accounts
for the effect of outliers. The proposed approach applies for general
categorical random variables without assuming faithfulness, an ordinal
relationship or a specific form of conditional distribution. We present
efficient algorithms and show the proposed methods are closely related to the
standard regularized regression approach. Under mild assumptions, we derive
non-asymptotic guarantees for successful structure learning with logarithmic
sample complexities for bounded-degree graphs. Numerical study on synthetic and
real datasets validates the effectiveness of our method. Code is available at
https://github.com/DanielLeee/drslbn.
- Abstract(参考訳): 我々は,一般的な離散ベイズネットワークの正確な骨格を,潜在的に破損したデータから学習する問題を考える。
分布的ロバストな最適化と回帰的アプローチに基づいて,バウンダリ・ワッサースタイン距離内の分布群に対する最も悪いリスクの最適化や,経験的分布へのkl発散を提案する。
最悪の場合のリスクは異常値の影響を負う。
提案手法は, 信頼度, 順序関係, 条件分布の特定の形式を仮定することなく, 一般カテゴリー確率変数に適用する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
穏やかな仮定の下では、有界次グラフに対する対数サンプル複素性を持つ構造学習を成功させるための非漸近的保証を導出する。
合成データと実データに関する数値的研究により,本手法の有効性が検証された。
コードはhttps://github.com/danielleee/drslbnで入手できる。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
機械学習と統計モデルのトレーニングは、しばしばデータ駆動型リスク基準の最適化を伴う。
ベイズ的非パラメトリック(ディリクレ過程)理論と、スムーズなあいまいさ-逆選好の最近の決定論的モデルを組み合わせた、新しいロバストな基準を提案する。
実用的な実装として、よく知られたディリクレプロセスの表現に基づいて、評価基準の抽出可能な近似を提案し、研究する。
論文 参考訳(メタデータ) (2024-01-28T21:19:15Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Learning Against Distributional Uncertainty: On the Trade-off Between
Robustness and Specificity [24.874664446700272]
本稿では,3つのアプローチを統一し,上記の2つの課題に対処する新たな枠組みについて検討する。
提案したモデルのモンテカルロ法に基づく解法(例えば、一貫性と正規性)、非漸近性(例えば、非バイアス性や誤差境界)について検討した。
論文 参考訳(メタデータ) (2023-01-31T11:33:18Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - $\beta$-Cores: Robust Large-Scale Bayesian Data Summarization in the
Presence of Outliers [14.918826474979587]
古典的ベイズ推定の質は、観測結果が推定データ生成モデルに適合するかどうかに大きく依存する。
本稿では,大容量データセットに同時スケール可能な変分推論手法を提案する。
多様なシミュレーションおよび実データ、および様々な統計モデルにおいて、我々のアプローチの適用性について説明する。
論文 参考訳(メタデータ) (2020-08-31T13:47:12Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
Predictive Uncertainties [12.068153197381575]
高速収束を達成しつつ、潜在過程間の共分散を維持できる新しい変分族を提案する。
新しいアプローチの効率的な実装を提供し、それをいくつかのベンチマークデータセットに適用します。
優れた結果をもたらし、最先端の代替品よりも精度とキャリブレーションされた不確実性推定とのバランスが良くなる。
論文 参考訳(メタデータ) (2020-05-22T11:10:59Z) - Distributionally Robust Chance Constrained Programming with Generative
Adversarial Networks (GANs) [0.0]
GAN(Generative Adversarial Network)をベースとしたデータ駆動型分散ロバストな制約付きプログラミングフレームワークを提案する。
非パラメトリックかつ教師なしの方法で、歴史的データから分布情報を完全抽出するために、GANを適用する。
提案手法は需要不確実性の下でサプライチェーン最適化に適用される。
論文 参考訳(メタデータ) (2020-02-28T00:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。