論文の概要: Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives
- arxiv url: http://arxiv.org/abs/2002.12493v2
- Date: Mon, 12 Apr 2021 07:03:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 02:39:07.137981
- Title: Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives
- Title(参考訳): モーメントによる最適化:動的・制御論的・シンプレクティック視点
- Authors: Michael Muehlebach and Michael I. Jordan
- Abstract要約: この論文は、運動量に基づく最適化アルゴリズムにおいてシンプレクティックな離散化スキームが重要であることを厳格に証明している。
これは加速収束を示すアルゴリズムの特性を提供する。
- 参考スコア(独自算出の注目度): 97.16266088683061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the convergence rate of various momentum-based optimization
algorithms from a dynamical systems point of view. Our analysis exploits
fundamental topological properties, such as the continuous dependence of
iterates on their initial conditions, to provide a simple characterization of
convergence rates. In many cases, closed-form expressions are obtained that
relate algorithm parameters to the convergence rate. The analysis encompasses
discrete time and continuous time, as well as time-invariant and time-variant
formulations, and is not limited to a convex or Euclidean setting. In addition,
the article rigorously establishes why symplectic discretization schemes are
important for momentum-based optimization algorithms, and provides a
characterization of algorithms that exhibit accelerated convergence.
- Abstract(参考訳): 運動量に基づく最適化アルゴリズムの収束速度を力学系の観点から解析する。
解析は,初期条件に対する反復の連続的依存などの基本的なトポロジカルな特性を利用して,収束率の簡易な評価を行う。
多くの場合、アルゴリズムパラメータと収束率を関連付ける閉形式式が得られる。
この分析は、時間不変および時間不変の定式化と同様に、離散時間と連続時間を含み、凸やユークリッドの設定に限らない。
さらに、この論文は、運動量に基づく最適化アルゴリズムにおいてシンプレクティックな離散化スキームが重要である理由を厳格に証明し、加速収束を示すアルゴリズムの特性を提供する。
関連論文リスト
- Convergence of Expectation-Maximization Algorithm with Mixed-Integer Optimization [5.319361976450982]
本稿では,特定の種類のEMアルゴリズムの収束を保証する一連の条件を紹介する。
本研究では,混合整数非線形最適化問題の解法として,反復アルゴリズムの新しい解析手法を提案する。
論文 参考訳(メタデータ) (2024-01-31T11:42:46Z) - Generalized Gradient Flows with Provable Fixed-Time Convergence and Fast
Evasion of Non-Degenerate Saddle Points [8.452349885923507]
グラディエントベースの1次凸最適化アルゴリズムは、機械学習タスクを含むさまざまな領域で広く適用可能である。
最適時間の固定時間理論の最近の進歩に触発されて,高速化最適化アルゴリズムを設計するための枠組みを導入する。
非ド・サドル点を許容する関数に対しては、これらのサドル点を避けるのに必要な時間は初期条件すべてに一様有界であることを示す。
論文 参考訳(メタデータ) (2022-12-07T16:36:23Z) - Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent
Flows [4.817429789586127]
本稿では, 固定時間安定力学系の概念に基づいて, 加速を実現するための多言語最適化フレームワークを提案する。
提案手法の高速化された収束特性を,最先端の最適化アルゴリズムに対して様々な数値例で検証する。
論文 参考訳(メタデータ) (2021-12-02T16:04:40Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z) - Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and
Finite-Time Performance [1.52292571922932]
非線形2時間スケール近似の収束と有限時間解析について検討する。
特に,本手法は期待値の収束を$mathcalO (1/k2/3)$で達成し,$k$は反復数であることを示す。
論文 参考訳(メタデータ) (2020-11-03T17:43:39Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Distributed Value Function Approximation for Collaborative Multi-Agent
Reinforcement Learning [2.7071541526963805]
本稿では,多エージェントオフポリシー学習のための分散勾配に基づく時間差分アルゴリズムを提案する。
提案するアルゴリズムは,その形式,可視性トレースの定義,時間スケールの選択,コンセンサス反復を組み込む方法などによって異なる。
より弱い情報構造制約の下で時間差分アルゴリズムにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2020-06-18T11:46:09Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
我々は、割引決定過程における政策評価の問題に対処し、生成モデルの下で、ll_infty$errorに対するマルコフに依存した保証を提供する。
我々は、ポリシー評価のために、局所ミニマックス下限の両漸近バージョンと非漸近バージョンを確立し、アルゴリズムを比較するためのインスタンス依存ベースラインを提供する。
論文 参考訳(メタデータ) (2020-03-16T17:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。