論文の概要: Utilizing Network Properties to Detect Erroneous Inputs
- arxiv url: http://arxiv.org/abs/2002.12520v2
- Date: Fri, 16 Oct 2020 16:43:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 01:48:01.522929
- Title: Utilizing Network Properties to Detect Erroneous Inputs
- Title(参考訳): ネットワーク特性を利用した誤入力検出
- Authors: Matt Gorbett, Nathaniel Blanchard
- Abstract要約: 我々は線形SVM分類器を訓練し、事前学習されたニューラルネットワークの隠れおよびソフトマックス特徴ベクトルを用いて誤データを検出する。
以上の結果から,これらのデータ型は一般に正しい例から線形に分離可能なアクティベーション特性を示すことが示唆された。
我々は、さまざまなデータセット、ドメイン、事前訓練されたモデル、および敵対的攻撃にまたがって、我々の発見を実験的に検証した。
- 参考スコア(独自算出の注目度): 0.76146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are vulnerable to a wide range of erroneous inputs such as
adversarial, corrupted, out-of-distribution, and misclassified examples. In
this work, we train a linear SVM classifier to detect these four types of
erroneous data using hidden and softmax feature vectors of pre-trained neural
networks. Our results indicate that these faulty data types generally exhibit
linearly separable activation properties from correct examples, giving us the
ability to reject bad inputs with no extra training or overhead. We
experimentally validate our findings across a diverse range of datasets,
domains, pre-trained models, and adversarial attacks.
- Abstract(参考訳): ニューラルネットワークは、敵、腐敗、配布外、誤分類例など、幅広い誤入力に対して脆弱である。
本研究では、線形SVM分類器をトレーニングし、事前学習ニューラルネットワークの隠れおよびソフトマックス特徴ベクトルを用いて、これらの4種類の誤データを検出する。
以上の結果から,誤りデータ型は一般に,適切な例から線形に分離可能なアクティベーション特性を示し,余分なトレーニングやオーバーヘッドを伴わずに悪い入力を拒否できることがわかった。
我々は、さまざまなデータセット、ドメイン、事前訓練されたモデル、および敵攻撃で、我々の発見を実験的に検証した。
関連論文リスト
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - DI-NIDS: Domain Invariant Network Intrusion Detection System [9.481792073140204]
コンピュータビジョンなどの様々な応用において、ドメイン適応技術は成功している。
しかし、ネットワーク侵入検出の場合、最先端のドメイン適応アプローチは成功に留まっている。
本稿では,複数のネットワークドメインから対数領域適応を用いて,ドメイン不変な特徴を抽出する。
論文 参考訳(メタデータ) (2022-10-15T10:26:22Z) - VPN: Verification of Poisoning in Neural Networks [11.221552724154988]
我々は、別のニューラルネットワークセキュリティ問題、すなわちデータ中毒について研究する。
この場合、アタッカーがトレーニングデータのサブセットにトリガーを挿入するので、テスト時にこのトリガーが入力され、トレーニングされたモデルがターゲットクラスに誤って分類される。
我々は、市販の検証ツールでチェックできるプロパティとして、データ中毒のチェックを定式化する方法を示す。
論文 参考訳(メタデータ) (2022-05-08T15:16:05Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
我々は、画像認識、自然言語処理、マルウェア検出の領域において効果的な攻撃として示されてきた$ell$-normで束縛された摂動を考える。
我々は,「トランケーション」と「アドリアル・トレーニング」を組み合わせた新しい防衛手法を提案する。
得られた洞察に触発され、これらのコンポーネントをニューラルネットワーク分類器に拡張する。
論文 参考訳(メタデータ) (2022-01-23T21:18:17Z) - Feature Encoding with AutoEncoders for Weakly-supervised Anomaly
Detection [46.76220474310698]
弱教師付き異常検出は、ラベル付きデータと豊富なラベル付きデータから異常検出を学習することを目的としている。
最近の研究は、正常なサンプルと異常なサンプルを特徴空間内の異なる領域に識別的にマッピングしたり、異なる分布に適合させたりすることで、異常検出のためのディープニューラルネットワークを構築している。
本稿では,入力データを,異常検出に使用可能な,より意味のある表現に変換するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-22T16:23:05Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - Robust Variational Autoencoder for Tabular Data with Beta Divergence [0.0]
本稿では,連続的特徴と分類的特徴を混合した頑健な変動型オートエンコーダを提案する。
ネットワークトラフィックデータセットの異常検出アプリケーションについて,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-06-15T08:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。