論文の概要: Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to
Adversarial Examples
- arxiv url: http://arxiv.org/abs/2002.12749v3
- Date: Sat, 7 Nov 2020 22:09:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 14:54:33.918248
- Title: Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to
Adversarial Examples
- Title(参考訳): 逆向型ディープフェイク:逆向型ディープフェイク検出器の脆弱性評価
- Authors: Shehzeen Hussain, Paarth Neekhara, Malhar Jere, Farinaz Koushanfar and
Julian McAuley
- Abstract要約: ビデオ操作技術の最近の進歩は、偽ビデオの生成をこれまで以上にアクセスしやすくしている。
操作されたビデオは偽情報を燃やし、メディアの信頼を減らすことができる。
近年開発されたDeepfake検出方法は、AI生成のフェイクビデオと実際のビデオとを区別するために、ディープニューラルネットワーク(DNN)に依存している。
- 参考スコア(独自算出の注目度): 23.695497512694068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in video manipulation techniques have made the generation of
fake videos more accessible than ever before. Manipulated videos can fuel
disinformation and reduce trust in media. Therefore detection of fake videos
has garnered immense interest in academia and industry. Recently developed
Deepfake detection methods rely on deep neural networks (DNNs) to distinguish
AI-generated fake videos from real videos. In this work, we demonstrate that it
is possible to bypass such detectors by adversarially modifying fake videos
synthesized using existing Deepfake generation methods. We further demonstrate
that our adversarial perturbations are robust to image and video compression
codecs, making them a real-world threat. We present pipelines in both white-box
and black-box attack scenarios that can fool DNN based Deepfake detectors into
classifying fake videos as real.
- Abstract(参考訳): ビデオ操作技術の最近の進歩は、偽ビデオの生成をこれまで以上にアクセスしやすくしている。
操作されたビデオは偽情報を燃やし、メディアの信頼を減らすことができる。
そのため、偽ビデオの検出は学術と産業に大きな関心を集めている。
近年開発されたDeepfake検出方法は、AI生成した偽ビデオと実際のビデオとを区別するために、ディープニューラルネットワーク(DNN)に依存している。
本研究では,既存のDeepfake生成手法を用いて合成した偽動画を逆修正することで,そのような検出を回避できることを実証する。
さらに、我々の敵対的摂動は画像圧縮コーデックやビデオ圧縮コーデックに対して堅牢であり、現実世界の脅威であることを示す。
我々は、DNNベースのDeepfake検出器を騙して偽動画を本物と分類できる、ホワイトボックスとブラックボックスの両方の攻撃シナリオにパイプラインを提示する。
関連論文リスト
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
被害者や人物のディープフェイクは、脅迫、ゆがみ、金融詐欺の詐欺師によって使用される。
本研究では,映像中の顔の存在の動的度を特徴付ける幾何学的フェイクネス機能(GFF)を提案する。
我々は、ビデオに同時に存在する複数の顔でビデオを分析するために、我々のアプローチを採用している。
論文 参考訳(メタデータ) (2024-10-10T13:10:34Z) - Comparative Analysis of Deep-Fake Algorithms [0.0]
ディープフェイク(Deepfakes)は、ディープラーニングベースのフェイクビデオとしても知られており、近年大きな関心を集めている。
これらのディープフェイクビデオは、誤った情報を広めたり、個人を偽装したり、フェイクニュースを作るといった悪質な目的で使用することができる。
ディープフェイク検出技術は、顔認識、モーション分析、音声と視覚の同期といった様々なアプローチを使用する。
論文 参考訳(メタデータ) (2023-09-06T18:17:47Z) - Detecting Deepfake by Creating Spatio-Temporal Regularity Disruption [94.5031244215761]
本稿では,実際のビデオにない「規則性破壊」を識別することで,ディープフェイク検出の一般化を促進することを提案する。
具体的には、空間的・時間的特性を慎重に調べることで、擬似フェイク発生器による実映像の破壊を提案する。
このような手法により,フェイクビデオを使わずにディープフェイク検出が可能となり,よりシンプルかつ効率的に一般化能力を向上させることができる。
論文 参考訳(メタデータ) (2022-07-21T10:42:34Z) - A Survey of Deep Fake Detection for Trial Courts [2.320417845168326]
DeepFakeのアルゴリズムは、人間が本物と区別できない偽のイメージやビデオを作成することができる。
偽の情報を拡散するのを避けるために、偽の動画を検出することが不可欠になっている。
本稿では,DeepFakeを検知する手法と,DeepFakeを検出できるデータセットについて検討する。
論文 参考訳(メタデータ) (2022-05-31T13:50:25Z) - Audio-Visual Person-of-Interest DeepFake Detection [77.04789677645682]
本研究の目的は、現実世界で遭遇する様々な操作方法やシナリオに対処できるディープフェイク検出器を提案することである。
我々は、対照的な学習パラダイムを活用して、各アイデンティティに対して最も識別しやすい、移動面と音声セグメントの埋め込みを学習する。
本手法は,シングルモダリティ(オーディオのみ,ビデオのみ)とマルチモダリティ(オーディオビデオ)の両方を検出でき,低品質・低画質ビデオに対して堅牢である。
論文 参考訳(メタデータ) (2022-04-06T20:51:40Z) - Watch Those Words: Video Falsification Detection Using Word-Conditioned
Facial Motion [82.06128362686445]
本稿では,安価なディープフェイクと視覚的に説得力のあるディープフェイクの両方を扱うためのマルチモーダルな意味法医学的アプローチを提案する。
帰属という概念を利用して、ある話者と他の話者を区別する個人固有の生体パターンを学習する。
既存の個人固有のアプローチとは異なり、この手法は口唇の操作に焦点を当てた攻撃にも有効である。
論文 参考訳(メタデータ) (2021-12-21T01:57:04Z) - Adversarially robust deepfake media detection using fused convolutional
neural network predictions [79.00202519223662]
現在のディープフェイク検出システムは、目に見えないデータと戦っている。
ビデオから抽出した偽画像と実画像の分類には,CNN(Deep Convolutional Neural Network)モデルが3種類採用されている。
提案手法は96.5%の精度で最先端のモデルより優れている。
論文 参考訳(メタデータ) (2021-02-11T11:28:00Z) - Detecting Deepfake Videos Using Euler Video Magnification [1.8506048493564673]
Deepfakeのビデオは、高度な機械学習技術を使ってビデオを操作している。
本稿では,ディープフェイク映像の識別技術について検討する。
提案手法では,Euler手法から抽出した特徴を用いて,偽造映像と未修正映像を分類する3つのモデルを訓練する。
論文 参考訳(メタデータ) (2021-01-27T17:37:23Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
我々は,インターネットから完全に収集された707のディープフェイクビデオから抽出された7,314の顔シーケンスからなる新しいデータセットWildDeepfakeを紹介した。
既存のWildDeepfakeデータセットと我々のWildDeepfakeデータセットのベースライン検出ネットワークを体系的に評価し、WildDeepfakeが実際により困難なデータセットであることを示す。
論文 参考訳(メタデータ) (2021-01-05T11:10:32Z) - How Do the Hearts of Deep Fakes Beat? Deep Fake Source Detection via
Interpreting Residuals with Biological Signals [9.918684475252636]
本研究では, 真偽を分離するだけでなく, 真偽の背後にある特定の生成モデルを発見するアプローチを提案する。
提案手法は,97.29%の精度で偽動画を検出でき,93.39%の精度でソースモデルを検出できることを示す。
論文 参考訳(メタデータ) (2020-08-26T03:35:47Z) - Deepfake Video Forensics based on Transfer Learning [0.0]
ディープフェイク」は、人間が本物のものと区別できない偽のイメージやビデオを作ることができる。
本稿では,各ディープフェイク映像フレームの特徴を把握するために,画像分類モデルを再学習する方法について述べる。
Deepfakeのビデオをチェックすると、87%以上の精度が得られた。
論文 参考訳(メタデータ) (2020-04-29T13:21:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。