論文の概要: Detecting Deepfake Videos Using Euler Video Magnification
- arxiv url: http://arxiv.org/abs/2101.11563v1
- Date: Wed, 27 Jan 2021 17:37:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 06:12:30.784082
- Title: Detecting Deepfake Videos Using Euler Video Magnification
- Title(参考訳): Euler Video Magnificationを用いたディープフェイクビデオ検出
- Authors: Rashmiranjan Das and Gaurav Negi and Alan F. Smeaton
- Abstract要約: Deepfakeのビデオは、高度な機械学習技術を使ってビデオを操作している。
本稿では,ディープフェイク映像の識別技術について検討する。
提案手法では,Euler手法から抽出した特徴を用いて,偽造映像と未修正映像を分類する3つのモデルを訓練する。
- 参考スコア(独自算出の注目度): 1.8506048493564673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in artificial intelligence make it progressively hard to
distinguish between genuine and counterfeit media, especially images and
videos. One recent development is the rise of deepfake videos, based on
manipulating videos using advanced machine learning techniques. This involves
replacing the face of an individual from a source video with the face of a
second person, in the destination video. This idea is becoming progressively
refined as deepfakes are getting progressively seamless and simpler to compute.
Combined with the outreach and speed of social media, deepfakes could easily
fool individuals when depicting someone saying things that never happened and
thus could persuade people in believing fictional scenarios, creating distress,
and spreading fake news. In this paper, we examine a technique for possible
identification of deepfake videos. We use Euler video magnification which
applies spatial decomposition and temporal filtering on video data to highlight
and magnify hidden features like skin pulsation and subtle motions. Our
approach uses features extracted from the Euler technique to train three models
to classify counterfeit and unaltered videos and compare the results with
existing techniques.
- Abstract(参考訳): 人工知能の最近の進歩は、真偽のメディア、特に画像やビデオの区別を徐々に困難にしている。
最近の開発は、高度な機械学習技術を用いたビデオ操作に基づくディープフェイクビデオの台頭である。
これは、目的地ビデオの中で、個人の顔をソースビデオから2人目の人物の顔に置き換えることである。
このアイデアは徐々に洗練され、ディープフェイクは徐々にシームレスになり、計算がより簡単になっています。
ソーシャルメディアのアウトリーチとスピードが組み合わさって、ディープフェイクは、決して起こらなかったことを話したり、フィクションのシナリオを信じたり、苦悩を生んだり、フェイクニュースを広めたりする際に、容易に個人を騙すことができる。
本稿では,ディープフェイク映像の識別技術について検討する。
ビデオデータに空間分解と時間フィルタリングを適用して、皮膚の脈動や微妙な動きなどの隠された機能を強調および拡大するEulerビデオ倍率を使用します。
提案手法では,Euler手法から抽出した特徴を用いて,偽造映像と未修正映像を分類し,既存の手法と比較する。
関連論文リスト
- DeePhy: On Deepfake Phylogeny [58.01631614114075]
DeePhyは、新しいDeepfake Phylogenyデータセットである。
6つのディープフェイク検出アルゴリズムを用いて,DeePhyデータセットのベンチマークを示す。
論文 参考訳(メタデータ) (2022-09-19T15:30:33Z) - Video Manipulations Beyond Faces: A Dataset with Human-Machine Analysis [60.13902294276283]
我々は826の動画(413のリアルと413の操作)からなるデータセットであるVideoShamを提示する。
既存のディープフェイクデータセットの多くは、2種類の顔操作にのみ焦点をあてている。
我々の分析によると、最先端の操作検出アルゴリズムはいくつかの特定の攻撃に対してのみ有効であり、VideoShamではうまくスケールしない。
論文 参考訳(メタデータ) (2022-07-26T17:39:04Z) - Detecting Deepfake by Creating Spatio-Temporal Regularity Disruption [89.18621496594244]
本稿では,実際のビデオにない「規則性破壊」を識別することで,ディープフェイク検出の一般化を促進することを提案する。
具体的には、空間的・時間的特性を慎重に調べることで、擬似フェイク発生器による実映像の破壊を提案する。
このような手法により,フェイクビデオを使わずにディープフェイク検出が可能となり,よりシンプルかつ効率的に一般化能力を向上させることができる。
論文 参考訳(メタデータ) (2022-07-21T10:42:34Z) - Copy Motion From One to Another: Fake Motion Video Generation [53.676020148034034]
人工知能の魅力的な応用は、任意の所望の動作を行う対象者のビデオを生成することである。
現在の手法では、通常、生成されたビデオの信頼性を評価するために、L2損失のGANを用いる。
本稿では,ポーズから前景画像へのマッピングの学習を容易にする理論的動機付け型Gromov-Wasserstein損失を提案する。
本手法は,人物の複雑な動きを忠実にコピーすることで,現実的な人物映像を生成できる。
論文 参考訳(メタデータ) (2022-05-03T08:45:22Z) - Watch Those Words: Video Falsification Detection Using Word-Conditioned
Facial Motion [82.06128362686445]
本稿では,安価なディープフェイクと視覚的に説得力のあるディープフェイクの両方を扱うためのマルチモーダルな意味法医学的アプローチを提案する。
帰属という概念を利用して、ある話者と他の話者を区別する個人固有の生体パターンを学習する。
既存の個人固有のアプローチとは異なり、この手法は口唇の操作に焦点を当てた攻撃にも有効である。
論文 参考訳(メタデータ) (2021-12-21T01:57:04Z) - Detection of GAN-synthesized street videos [21.192357452920007]
本稿では,新たなAI生成ビデオがストリートシーケンスを駆動する際の検出可能性について検討する(以下,DeepStreetsビデオと呼ぶ)。
我々は、Vid2vidアーキテクチャによって生成された最先端のDeepStreetsビデオにおいて、非常に優れた性能を発揮する、シンプルなフレームベース検出器を提案する。
論文 参考訳(メタデータ) (2021-09-10T16:59:15Z) - Cost Sensitive Optimization of Deepfake Detector [6.427063076424032]
我々は、ディープフェイク検出タスクは、ユーザーが毎日大量のビデオを視聴するスクリーニングタスクとみなすべきであると論じている。
アップロードされたビデオのほんの一部だけがディープフェイクであることは明らかなので、検出性能をコストに敏感な方法で測定する必要がある。
論文 参考訳(メタデータ) (2020-12-08T04:06:02Z) - Deepfake detection: humans vs. machines [4.485016243130348]
クラウドソーシングのようなシナリオで実施した主観的研究で,ビデオがディープフェイクであるか否かを人間が確認することがいかに困難であるかを体系的に評価する。
各ビデオについて、簡単な質問は「ビデオの中の人物の顔は偽物か?」というものだった。
この評価は、人間の知覚が機械の知覚とは大きく異なるが、成功しても異なる方法ではディープフェイクに騙されることを示した。
論文 参考訳(メタデータ) (2020-09-07T15:20:37Z) - Face2Face: Real-time Face Capture and Reenactment of RGB Videos [66.38142459175191]
Face2Faceは、モノクラーターゲットビデオシーケンスのリアルタイムな顔再現のための新しいアプローチである。
我々は、高密度光度整合度測定を用いて、音源とターゲット映像の両方の表情を追跡する。
我々は、対応するビデオストリーム上に合成されたターゲット顔を再レンダリングする。
論文 参考訳(メタデータ) (2020-07-29T12:47:16Z) - Deepfake Video Forensics based on Transfer Learning [0.0]
ディープフェイク」は、人間が本物のものと区別できない偽のイメージやビデオを作ることができる。
本稿では,各ディープフェイク映像フレームの特徴を把握するために,画像分類モデルを再学習する方法について述べる。
Deepfakeのビデオをチェックすると、87%以上の精度が得られた。
論文 参考訳(メタデータ) (2020-04-29T13:21:28Z) - Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to
Adversarial Examples [23.695497512694068]
ビデオ操作技術の最近の進歩は、偽ビデオの生成をこれまで以上にアクセスしやすくしている。
操作されたビデオは偽情報を燃やし、メディアの信頼を減らすことができる。
近年開発されたDeepfake検出方法は、AI生成のフェイクビデオと実際のビデオとを区別するために、ディープニューラルネットワーク(DNN)に依存している。
論文 参考訳(メタデータ) (2020-02-09T07:10:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。