Robust Extrinsic Symmetry Estimation in 3D Point Clouds
- URL: http://arxiv.org/abs/2109.09927v2
- Date: Sun, 2 Jul 2023 06:25:17 GMT
- Title: Robust Extrinsic Symmetry Estimation in 3D Point Clouds
- Authors: Rajendra Nagar
- Abstract summary: Detecting the reflection symmetry plane of an object represented by a 3D point cloud is a fundamental problem in 3D computer vision and geometry processing.
We propose a statistical estimator-based approach for the plane of reflection symmetry that is robust to outliers and missing parts.
- Score: 4.416484585765027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting the reflection symmetry plane of an object represented by a 3D
point cloud is a fundamental problem in 3D computer vision and geometry
processing due to its various applications, such as compression, object
detection, robotic grasping, 3D surface reconstruction, etc. There exist
several efficient approaches for solving this problem for clean 3D point
clouds. However, it is a challenging problem to solve in the presence of
outliers and missing parts. The existing methods try to overcome this challenge
mostly by voting-based techniques but do not work efficiently. In this work, we
proposed a statistical estimator-based approach for the plane of reflection
symmetry that is robust to outliers and missing parts. We pose the problem of
finding the optimal estimator for the reflection symmetry as an optimization
problem on a 2-Sphere that quickly converges to the global solution for an
approximate initialization. We further adapt the heat kernel signature for
symmetry invariant matching of mirror symmetric points. This approach helps us
to decouple the chicken-and-egg problem of finding the optimal symmetry plane
and correspondences between the reflective symmetric points. The proposed
approach achieves comparable mean ground-truth error and 4.5\% increment in the
F-score as compared to the state-of-the-art approaches on the benchmark
dataset.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - Resolving Symmetry Ambiguity in Correspondence-based Methods for Instance-level Object Pose Estimation [5.821462441570274]
We propose SymCode, a symmetry-aware surface that encodes the object surface based on one-to-many correspondences.
We also introduce SymNet, a fast end-to-end network that directly regresses an object's 6D pose parameters without solving a problem.
arXiv Detail & Related papers (2024-05-17T05:48:56Z) - Partial Symmetry Detection for 3D Geometry using Contrastive Learning
with Geodesic Point Cloud Patches [10.48309709793733]
We propose to learn rotation, reflection, translation and scale invariant local shape features for geodesic point cloud patches.
We show that our approach is able to extract multiple valid solutions for this ambiguous problem.
We incorporate the detected symmetries together with a region growing algorithm to demonstrate a downstream task.
arXiv Detail & Related papers (2023-12-13T15:48:50Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
We tackle the problem of estimating a Manhattan frame.
We derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers.
We also design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization.
arXiv Detail & Related papers (2023-08-21T13:03:25Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - Recurrently Estimating Reflective Symmetry Planes from Partial
Pointclouds [5.098175145801009]
We present an alternative novel encoding that instead slices the data along the height dimension and passes it sequentially to a 2D convolutional recurrent regression scheme.
We show that our approach has an accuracy comparable to state-of-the-art techniques on the task of planar reflective symmetry estimation on full synthetic objects.
arXiv Detail & Related papers (2021-06-30T15:26:15Z) - Canny-VO: Visual Odometry with RGB-D Cameras based on Geometric 3D-2D
Edge Alignment [85.32080531133799]
This paper reviews the classical problem of free-form curve registration and applies it to an efficient RGBD visual odometry system called Canny-VO.
Two replacements for the distance transformation commonly used in edge registration are proposed: Approximate Nearest Neighbour Fields and Oriented Nearest Neighbour Fields.
3D2D edge alignment benefits from these alternative formulations in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2020-12-15T11:42:17Z) - Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based 3D
Reconstruction with Symmetry [12.511526058118143]
We propose a sampling scheme that theoretically encourages generalization and results in fast convergence for SGD-based optimization algorithms.
Based on the reflective symmetry of an object, we propose a feature fusion method that alleviates issues due to self-occlusions.
Our proposed system Ladybird is able to create high quality 3D object reconstructions from a single input image.
arXiv Detail & Related papers (2020-07-27T09:17:00Z) - Robust 6D Object Pose Estimation by Learning RGB-D Features [59.580366107770764]
We propose a novel discrete-continuous formulation for rotation regression to resolve this local-optimum problem.
We uniformly sample rotation anchors in SO(3), and predict a constrained deviation from each anchor to the target, as well as uncertainty scores for selecting the best prediction.
Experiments on two benchmarks: LINEMOD and YCB-Video, show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2020-02-29T06:24:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.