Conjugate-gradient-based Adam for stochastic optimization and its
application to deep learning
- URL: http://arxiv.org/abs/2003.00231v2
- Date: Tue, 3 Mar 2020 04:52:37 GMT
- Title: Conjugate-gradient-based Adam for stochastic optimization and its
application to deep learning
- Authors: Yu Kobayashi and Hideaki Iiduka
- Abstract summary: This paper proposes a conjugate-gradient-based Adam algorithm blending Adam with nonlinear conjugate gradient methods and shows its analysis.
Numerical experiments on text classification and image classification show that the proposed algorithm can train deep neural network convergence in fewer epochs than the existing adaptive optimization algorithms can.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a conjugate-gradient-based Adam algorithm blending Adam
with nonlinear conjugate gradient methods and shows its convergence analysis.
Numerical experiments on text classification and image classification show that
the proposed algorithm can train deep neural network models in fewer epochs
than the existing adaptive stochastic optimization algorithms can.
Related papers
- Conjugate-Gradient-like Based Adaptive Moment Estimation Optimization Algorithm for Deep Learning [2.695991050833627]
We propose a new optimization algorithm named CG-like-Adam for deep learning.
Specifically, both the first-order and the second-order moment estimation of generic Adam are replaced by the conjugate-gradient-like.
Numerical experiments show the superiority of the proposed algorithm based on the CIFAR10/100 dataset.
arXiv Detail & Related papers (2024-04-02T07:57:17Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - StochGradAdam: Accelerating Neural Networks Training with Stochastic Gradient Sampling [0.0]
We introduce StochGradAdam, a novel extension of the Adam algorithm, incorporating gradient sampling techniques.
StochGradAdam achieves comparable or superior performance to Adam, even when using fewer gradient updates per iteration.
The results suggest that this approach is particularly effective for large-scale models and datasets.
arXiv Detail & Related papers (2023-10-25T22:45:31Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - A Control Theoretic Framework for Adaptive Gradient Optimizers in
Machine Learning [0.6526824510982802]
Adaptive gradient methods have become popular in optimizing deep neural networks.
Recent examples include AdaGrad and Adam.
We develop a generic framework for adaptive gradient methods.
arXiv Detail & Related papers (2022-06-04T17:55:33Z) - Understanding the Generalization of Adam in Learning Neural Networks
with Proper Regularization [118.50301177912381]
We show that Adam can converge to different solutions of the objective with provably different errors, even with weight decay globalization.
We show that if convex, and the weight decay regularization is employed, any optimization algorithms including Adam will converge to the same solution.
arXiv Detail & Related papers (2021-08-25T17:58:21Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Optimization of Graph Total Variation via Active-Set-based Combinatorial
Reconditioning [48.42916680063503]
We propose a novel adaptive preconditioning strategy for proximal algorithms on this problem class.
We show that nested-forest decomposition of the inactive edges yields a guaranteed local linear convergence rate.
Our results suggest that local convergence analysis can serve as a guideline for selecting variable metrics in proximal algorithms.
arXiv Detail & Related papers (2020-02-27T16:33:09Z) - An improved online learning algorithm for general fuzzy min-max neural
network [11.631815277762257]
This paper proposes an improved version of the current online learning algorithm for a general fuzzy min-max neural network (GFMM)
The proposed approach does not use the contraction process for overlapping hyperboxes, which is more likely to increase the error rate.
In order to reduce the sensitivity to the training samples presentation order of this new on-line learning algorithm, a simple ensemble method is also proposed.
arXiv Detail & Related papers (2020-01-08T06:24:40Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.