StochGradAdam: Accelerating Neural Networks Training with Stochastic Gradient Sampling
- URL: http://arxiv.org/abs/2310.17042v3
- Date: Mon, 21 Oct 2024 21:54:46 GMT
- Title: StochGradAdam: Accelerating Neural Networks Training with Stochastic Gradient Sampling
- Authors: Juyoung Yun,
- Abstract summary: We introduce StochGradAdam, a novel extension of the Adam algorithm, incorporating gradient sampling techniques.
StochGradAdam achieves comparable or superior performance to Adam, even when using fewer gradient updates per iteration.
The results suggest that this approach is particularly effective for large-scale models and datasets.
- Score: 0.0
- License:
- Abstract: In this paper, we introduce StochGradAdam, a novel optimizer designed as an extension of the Adam algorithm, incorporating stochastic gradient sampling techniques to improve computational efficiency while maintaining robust performance. StochGradAdam optimizes by selectively sampling a subset of gradients during training, reducing the computational cost while preserving the advantages of adaptive learning rates and bias corrections found in Adam. Our experimental results, applied to image classification and segmentation tasks, demonstrate that StochGradAdam can achieve comparable or superior performance to Adam, even when using fewer gradient updates per iteration. By focusing on key gradient updates, StochGradAdam offers stable convergence and enhanced exploration of the loss landscape, while mitigating the impact of noisy gradients. The results suggest that this approach is particularly effective for large-scale models and datasets, providing a promising alternative to traditional optimization techniques for deep learning applications.
Related papers
- MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
We propose a unified training framework for deep neural networks.
We introduce three instances of MARS that leverage preconditioned gradient optimization.
Results indicate that the implementation of MARS consistently outperforms Adam.
arXiv Detail & Related papers (2024-11-15T18:57:39Z) - Variational Stochastic Gradient Descent for Deep Neural Networks [16.96187187108041]
Current state-of-the-arts are adaptive gradient-based optimization methods such as Adam.
Here, we propose to combine both approaches, resulting in the Variational Gradient Descent (VSGD)
We show how our VSGD method relates to other adaptive gradient-baseds like Adam.
arXiv Detail & Related papers (2024-04-09T18:02:01Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Adaptive Optimization with Examplewise Gradients [23.504973357538418]
We propose a new, more general approach to the design of gradient-based optimization methods for machine learning.
In this new framework, iterations assume access to a batch of estimates per parameter, rather than a single estimate.
This better reflects the information that is actually available in typical machine learning setups.
arXiv Detail & Related papers (2021-11-30T23:37:01Z) - Understanding the Generalization of Adam in Learning Neural Networks
with Proper Regularization [118.50301177912381]
We show that Adam can converge to different solutions of the objective with provably different errors, even with weight decay globalization.
We show that if convex, and the weight decay regularization is employed, any optimization algorithms including Adam will converge to the same solution.
arXiv Detail & Related papers (2021-08-25T17:58:21Z) - MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of
Gradients [112.00379151834242]
We propose adaptive learning rate principle, in which the running mean of squared gradient in Adam is replaced by a weighted mean, with weights chosen to maximize the estimated variance each coordinate.
This results in faster adaptation, which leads more desirable empirical convergence behaviors.
arXiv Detail & Related papers (2020-06-21T21:47:43Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - TAdam: A Robust Stochastic Gradient Optimizer [6.973803123972298]
Machine learning algorithms aim to find patterns from observations, which may include some noise, especially in robotics domain.
To perform well even with such noise, we expect them to be able to detect outliers and discard them when needed.
We propose a new gradient optimization method, whose robustness is directly built in the algorithm, using the robust student-t distribution as its core idea.
arXiv Detail & Related papers (2020-02-29T04:32:36Z) - On the Trend-corrected Variant of Adaptive Stochastic Optimization
Methods [30.084554989542475]
We present a new framework for Adam-type methods with the trend information when updating the parameters with the adaptive step size and gradients.
We show empirically the importance of adding the trend component, where our framework outperforms the conventional Adam and AMSGrad methods constantly on the classical models with several real-world datasets.
arXiv Detail & Related papers (2020-01-17T01:23:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.