論文の概要: Unsupervised Dictionary Learning for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2003.00293v2
- Date: Mon, 7 Sep 2020 12:49:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 20:43:53.665705
- Title: Unsupervised Dictionary Learning for Anomaly Detection
- Title(参考訳): 異常検出のための教師なし辞書学習
- Authors: Paul Irofti and Andra B\u{a}ltoiu
- Abstract要約: 本稿では,最近行った半教師付きオンラインアルゴリズム TODDLeR の反マネーロンダリングアプリケーションにおける新しい結果について述べる。
また,本研究では,学習アルゴリズムの性能をサンプルの性質を示すため,教師なしの新たな手法を提案する。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the possibilities of employing dictionary learning to address
the requirements of most anomaly detection applications, such as absence of
supervision, online formulations, low false positive rates. We present new
results of our recent semi-supervised online algorithm, TODDLeR, on a
anti-money laundering application. We also introduce a novel unsupervised
method of using the performance of the learning algorithm as indication of the
nature of the samples.
- Abstract(参考訳): 辞書学習を活用して,監視の欠如,オンラインの定式化,偽陽性率の低下など,ほとんどの異常検出アプリケーションの要件に対処する可能性について検討する。
我々は,最近行った半教師付きオンラインアルゴリズム TODDLeR の反マネーロンダリングアプリケーションにおける新しい結果を示す。
また,本研究では,学習アルゴリズムの性能をサンプルの性質を示すため,教師なしの新たな手法を提案する。
関連論文リスト
- Unsupervised Novelty Detection Methods Benchmarking with Wavelet Decomposition [0.22369578015657962]
新規性検出のための教師なし機械学習アルゴリズムを比較する。
新しいデータセットは、特定の周波数で振動するアクチュエータから収集され、アルゴリズムをベンチマークし、フレームワークを評価する。
本研究は,実世界の新規性検出アプリケーションにおける教師なし学習技術の適応性と堅牢性に関する貴重な知見を提供する。
論文 参考訳(メタデータ) (2024-09-11T09:31:28Z) - Unsupervised Continual Anomaly Detection with Contrastively-learned
Prompt [80.43623986759691]
UCADと呼ばれる新しい非教師付き連続異常検出フレームワークを提案する。
このフレームワークは、対照的に学習したプロンプトを通じて、UDAに継続的な学習能力を持たせる。
我々は総合的な実験を行い、教師なし連続異常検出とセグメンテーションのベンチマークを設定した。
論文 参考訳(メタデータ) (2024-01-02T03:37:11Z) - Agnostic Interactive Imitation Learning: New Theory and Practical Algorithms [22.703438243976876]
本研究では、対話型模倣学習について研究し、学習者がアクションアノテーションの実証的な専門家に対話的に問い合わせる。
証明可能な有限サンプル保証を備えた新しいオラクル効率アルゴリズム MFTPL-P を提案する。
論文 参考訳(メタデータ) (2023-12-28T07:05:30Z) - Domain-Aware Augmentations for Unsupervised Online General Continual
Learning [7.145581090959242]
本稿では、教師なしオンライン総合学習(UOGCL)におけるコントラスト学習のためのメモリ使用量を改善する新しい手法を提案する。
提案手法は単純だが有効であり, 従来の非教師なし手法に比べ, 最新の結果が得られる。
ドメインを意識した拡張手順は他のリプレイ方式にも適用可能であり、継続的な学習には有望な戦略である。
論文 参考訳(メタデータ) (2023-09-13T11:45:21Z) - Out-Of-Distribution Detection In Unsupervised Continual Learning [7.800379384628357]
教師なし連続学習は、人間のアノテーションを必要とせずに、新しいタスクを段階的に学習することを目的としている。
各新しいデータが新しいタスクに対応するかどうかを最初に識別するためには、配布外検知器が必要である。
本稿では,まず出力バイアスを補正し,分布内データに対する出力信頼度を高めることによって,新しいOOD検出手法を提案する。
論文 参考訳(メタデータ) (2022-04-12T01:24:54Z) - Learning to Selectively Learn for Weakly-supervised Paraphrase
Generation [81.65399115750054]
弱監督データを用いた高品質なパラフレーズを生成するための新しい手法を提案する。
具体的には、弱制御されたパラフレーズ生成問題に以下のように取り組む。
検索に基づく擬似パラフレーズ展開により、豊富なラベル付き並列文を得る。
提案手法は,既存の教師なしアプローチよりも大幅に改善され,教師付き最先端技術と同等の性能を示す。
論文 参考訳(メタデータ) (2021-09-25T23:31:13Z) - Disambiguation of weak supervision with exponential convergence rates [88.99819200562784]
教師付き学習では、データは不完全で差別的な情報で注釈付けされる。
本稿では,ある入力から潜在的な対象のセットが与えられる弱い監督の事例である部分的ラベリングに焦点を当てる。
弱い監督から完全な監督を回復する実証的曖昧化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-04T18:14:32Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
自然言語処理のためのトランスファーラーニングとアクティブラーニングの最近の進歩は、必要なアノテーション予算を大幅に削減する可能性を開く。
我々は,様々なベイズ不確実性推定手法とモンテカルロドロップアウトオプションの実験的研究を,アクティブ学習フレームワークで実施する。
また, 能動学習中にインスタンスを取得するためには, 完全サイズのトランスフォーマーを蒸留版に置き換えることにより, 計算性能が向上することを示した。
論文 参考訳(メタデータ) (2021-01-20T13:59:25Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
我々は、よく知られたOFULアルゴリズムの正規化バージョンを実装するバンディットアルゴリズムのクラスを考える。
我々は,タスク数の増加とタスク分散の分散が小さくなると,タスクを個別に学習する上で,我々の戦略が大きな優位性を持つことを理論的および実験的に示す。
論文 参考訳(メタデータ) (2020-05-18T08:41:39Z) - Provably Efficient Exploration for Reinforcement Learning Using
Unsupervised Learning [96.78504087416654]
強化学習(RL)問題における効率的な探索に教師なし学習を用い,本パラダイムが有効であるかどうかを考察する。
本稿では,教師なし学習アルゴリズムと非線形表RLアルゴリズムという,2つのコンポーネント上に構築された汎用的なアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-15T19:23:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。