論文の概要: Agnostic Interactive Imitation Learning: New Theory and Practical Algorithms
- arxiv url: http://arxiv.org/abs/2312.16860v2
- Date: Wed, 17 Jul 2024 10:05:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 22:48:58.277829
- Title: Agnostic Interactive Imitation Learning: New Theory and Practical Algorithms
- Title(参考訳): 対話型模倣学習 : 新しい理論と実践的アルゴリズム
- Authors: Yichen Li, Chicheng Zhang,
- Abstract要約: 本研究では、対話型模倣学習について研究し、学習者がアクションアノテーションの実証的な専門家に対話的に問い合わせる。
証明可能な有限サンプル保証を備えた新しいオラクル効率アルゴリズム MFTPL-P を提案する。
- 参考スコア(独自算出の注目度): 22.703438243976876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study interactive imitation learning, where a learner interactively queries a demonstrating expert for action annotations, aiming to learn a policy that has performance competitive with the expert, using as few annotations as possible. We focus on the general agnostic setting where the expert demonstration policy may not be contained in the policy class used by the learner. We propose a new oracle-efficient algorithm MFTPL-P (abbreviation for Mixed Follow the Perturbed Leader with Poisson perturbations) with provable finite-sample guarantees, under the assumption that the learner is given access to samples from some ``explorative'' distribution over states. Our guarantees hold for any policy class, which is considerably broader than prior state of the art. We further propose Bootstrap-Dagger, a more practical variant that does not require additional sample access. Empirically, MFTPL-P and Bootstrap-Dagger notably surpass online and offline imitation learning baselines in continuous control tasks.
- Abstract(参考訳): 本研究では,対話型模倣学習について検討し,学習者が行動アノテーションの実証的専門家に対話的に質問し,専門家と性能的に競合するポリシーを可能な限り少ないアノテーションで学習することを目的とした。
我々は,専門家による実証政策を学習者が使用する政策クラスに含まないような一般不可知的な設定に着目する。
そこで本研究では,学習者が「探索的」な状態分布からサンプルにアクセスできることを前提として,有限サンプル保証を保証できる新しいオラクル効率アルゴリズム MFTPL-P (Med Follow the Perturbed Leader with Poisson 摂動による混在型リーダーの略)を提案する。
われわれの保証はいかなる政策クラスにも当てはまる。
さらに,より実用的なサンプルアクセスを必要としないBootstrap-Daggerを提案する。
実証的には、MFTPL-PとBootstrap-Daggerは、オンラインおよびオフラインの模倣学習ベースラインを、継続的制御タスクで上回っている。
関連論文リスト
- RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - When is Agnostic Reinforcement Learning Statistically Tractable? [76.1408672715773]
エンフスパンニング容量と呼ばれる新しい複雑性測度は、設定された$Pi$にのみ依存し、MDPダイナミクスとは独立である。
我々は、学習するためにスーパーポリノミカルな数のサンプルを必要とする制限付きスパンリング能力を持つポリシークラス$Pi$が存在することを示した。
これにより、生成的アクセスとオンラインアクセスモデルの間の学習可能性の驚くほどの分離が明らかになる。
論文 参考訳(メタデータ) (2023-10-09T19:40:54Z) - MEGA-DAgger: Imitation Learning with Multiple Imperfect Experts [7.4506213369860195]
MEGA-DAggerは、複数の不完全な専門家と対話的な学習に適した新しいDAgger亜種である。
我々は,MEGA-DAggerを用いて学習したポリシーが,最先端のインタラクティブな模倣学習アルゴリズムを用いて学習した専門家と政策の両方より優れていることを実証した。
論文 参考訳(メタデータ) (2023-03-01T16:40:54Z) - Deconfounding Imitation Learning with Variational Inference [19.99248795957195]
標準的な模倣学習は、スペシャリストが模倣剤とは異なる感覚入力を持つ場合、失敗する可能性がある。
これは、部分的な可観測性によって、因果グラフに隠された共同創設者が生まれるためである。
本稿では,専門家の潜伏情報を推測するために変分推論モデルを訓練し,それを用いて潜伏条件ポリシーを訓練することを提案する。
論文 参考訳(メタデータ) (2022-11-04T18:00:02Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Constructing a Good Behavior Basis for Transfer using Generalized Policy
Updates [63.58053355357644]
そこで我々は,優れた政策集合を学習する問題を考察し,組み合わせることで,目に見えない多種多様な強化学習タスクを解くことができることを示した。
理論的には、独立したポリシーのセットと呼ぶ、特定の多様なポリシーのセットにアクセスできることによって、ハイレベルなパフォーマンスを即時に達成できることが示される。
論文 参考訳(メタデータ) (2021-12-30T12:20:46Z) - Combining Online Learning and Offline Learning for Contextual Bandits
with Deficient Support [53.11601029040302]
現在のオフライン政治学習アルゴリズムは、主に逆確率スコア(IPS)重み付けに基づいている。
オフライン学習とオンライン探索を組み合わせた新しい手法を提案する。
提案手法は,最小限のオンライン探索数を用いて理論的保証を伴う最適政策を決定する。
論文 参考訳(メタデータ) (2021-07-24T05:07:43Z) - Generalization Guarantees for Imitation Learning [6.542289202349586]
模倣学習からの制御ポリシーは、しばしば新しい環境への一般化に失敗する。
本稿では,PAC-Bayesフレームワークを利用した模倣学習のための厳密な一般化保証を提案する。
論文 参考訳(メタデータ) (2020-08-05T03:04:13Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
すなわち、強化信号へのアクセスがなく、遷移力学の知識がなく、環境とのさらなる相互作用もない。
1つの解決策は、既存のアルゴリズムをオフライン環境で動作させるために、見習いの学習に適合させることである。
しかし、このようなアプローチは、政治外の評価やオフラインモデルの推定に大きく依存しており、間接的で非効率である可能性がある。
優れたソリューションは、ポリシーを明示的にパラメータ化し、ロールアウトダイナミクスから暗黙的に学習し、完全にオフラインで運用できるべきだ、と私たちは主張する。
論文 参考訳(メタデータ) (2020-06-25T03:27:59Z) - Analyzing Student Strategies In Blended Courses Using Clickstream Data [32.81171098036632]
パターンマイニングと、自然言語処理から借用したモデルを用いて、学生のインタラクションを理解します。
きめ細かいクリックストリームデータは、非商業的な教育支援システムであるDiderotを通じて収集される。
提案手法は,混合コースの低データ設定においても有意な洞察を得られることが示唆された。
論文 参考訳(メタデータ) (2020-05-31T03:01:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。