論文の概要: Deep Learning for Content-based Personalized Viewport Prediction of
360-Degree VR Videos
- arxiv url: http://arxiv.org/abs/2003.00429v1
- Date: Sun, 1 Mar 2020 07:31:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 12:37:17.401922
- Title: Deep Learning for Content-based Personalized Viewport Prediction of
360-Degree VR Videos
- Title(参考訳): コンテンツに基づく360度VR映像のパーソナライズドビューポート予測のための深層学習
- Authors: Xinwei Chen, Ali Taleb Zadeh Kasgari and Walid Saad
- Abstract要約: 本稿では、位置データとビデオフレームコンテンツを活用して、将来の頭部の動きを予測するためのディープラーニングネットワークを提案する。
このニューラルネットワークに入力されるデータを最適化するために、このモデルのために、データサンプル率、データ削減、長期予測長についても検討する。
- 参考スコア(独自算出の注目度): 72.08072170033054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the problem of head movement prediction for virtual reality
videos is studied. In the considered model, a deep learning network is
introduced to leverage position data as well as video frame content to predict
future head movement. For optimizing data input into this neural network, data
sample rate, reduced data, and long-period prediction length are also explored
for this model. Simulation results show that the proposed approach yields
16.1\% improvement in terms of prediction accuracy compared to a baseline
approach that relies only on the position data.
- Abstract(参考訳): 本稿では,仮想現実ビデオにおける頭部運動予測の問題について述べる。
検討したモデルでは、位置データとビデオフレームの内容を利用して将来の頭部の動きを予測する深層学習ネットワークが導入された。
このニューラルネットワークへのデータ入力を最適化するために、データサンプルレート、縮小データ、長期予測長も検討されている。
シミュレーションの結果,提案手法は位置データのみに依存するベースラインアプローチに比べて予測精度が16.1\%向上していることがわかった。
関連論文リスト
- Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
我々は,過去を前提とした将来のセンサ観測の課題を探求する。
マルチモーダリティを扱える画像拡散モデルの大規模事前学習を活用する。
我々は、屋内と屋外のシーンにまたがる多様なビデオのセットについて、ビデオ予測のためのベンチマークを作成する。
論文 参考訳(メタデータ) (2024-04-17T16:56:31Z) - Context-based Interpretable Spatio-Temporal Graph Convolutional Network
for Human Motion Forecasting [0.0]
本稿では,効率的な3次元ポーズ予測モデルとしてコンテキスト解釈型時空間グラフネットワーク(IST-GCN)を提案する。
提案アーキテクチャでは,ポーズシーケンスから意味のある情報を抽出し,入力モデルにアグリゲーションとアクセラレーションを集約し,最終的に出力変位を予測する。
論文 参考訳(メタデータ) (2024-02-21T17:51:30Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Learning Cross-Scale Prediction for Efficient Neural Video Compression [30.051859347293856]
低レイテンシモードのUVGデータセット上のsRGB PSNRの観点から、最新のコーディング標準であるH.266/VVCと競合する最初のニューラルビデオを示す。
そこで我々は,より効率的な動き補償を実現する,新しいクロススケール予測モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-26T03:12:17Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Confidence Adaptive Anytime Pixel-Level Recognition [86.75784498879354]
任意の時間推論は、いつでも停止される可能性のある予測の進行を行うモデルを必要とする。
我々は,任意のピクセルレベルの認識に対して,最初の統一とエンドツーエンドのモデルアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-01T20:01:57Z) - Retrieval Augmentation to Improve Robustness and Interpretability of
Deep Neural Networks [3.0410237490041805]
本研究では,深層ニューラルネットワークの堅牢性と解釈性を改善するために,トレーニングデータを積極的に活用する。
具体的には、LSTMモデルのメモリ状態を初期化したり、注意機構を誘導するために、最も近い入力例のターゲットを用いる。
その結果,Flickr8 と IMDB の2つのタスクに対して提案したモデルの有効性が示された。
論文 参考訳(メタデータ) (2021-02-25T17:38:31Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
VRNN(Variiational Recurrent Neural Networks)と呼ばれる生成モデルに基づく新しいLiDAR予測フレームワークを提案する。
提案手法は,フレーム内の奥行きマップを空間的に塗り替えることで,スパースデータを扱う際の従来のビデオ予測フレームワークの限界に対処できる。
VRNNのスパースバージョンとラベルを必要としない効果的な自己監督型トレーニング方法を紹介します。
論文 参考訳(メタデータ) (2021-02-19T11:56:44Z) - Motion Segmentation using Frequency Domain Transformer Networks [29.998917158604694]
本稿では,前景と背景を別々にモデル化することで,次のフレームを予測できる新しいエンドツーエンド学習アーキテクチャを提案する。
我々の手法は、ビデオラダーネットワークや予測ゲーテッドピラミドなど、広く使われているビデオ予測手法よりも優れた合成データが得られる。
論文 参考訳(メタデータ) (2020-04-18T15:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。