Deep Learning for Content-based Personalized Viewport Prediction of
360-Degree VR Videos
- URL: http://arxiv.org/abs/2003.00429v1
- Date: Sun, 1 Mar 2020 07:31:50 GMT
- Title: Deep Learning for Content-based Personalized Viewport Prediction of
360-Degree VR Videos
- Authors: Xinwei Chen, Ali Taleb Zadeh Kasgari and Walid Saad
- Abstract summary: In this paper, a deep learning network is introduced to leverage position data as well as video frame content to predict future head movement.
For optimizing data input into this neural network, data sample rate, reduced data, and long-period prediction length are also explored for this model.
- Score: 72.08072170033054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, the problem of head movement prediction for virtual reality
videos is studied. In the considered model, a deep learning network is
introduced to leverage position data as well as video frame content to predict
future head movement. For optimizing data input into this neural network, data
sample rate, reduced data, and long-period prediction length are also explored
for this model. Simulation results show that the proposed approach yields
16.1\% improvement in terms of prediction accuracy compared to a baseline
approach that relies only on the position data.
Related papers
- Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
We explore the task of generating future sensor observations conditioned on the past.
We leverage the large-scale pretraining of image diffusion models which can handle multi-modality.
We create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes.
arXiv Detail & Related papers (2024-04-17T16:56:31Z) - Context-based Interpretable Spatio-Temporal Graph Convolutional Network
for Human Motion Forecasting [0.0]
We present a Context- Interpretable Stemporal Graphal Network (IST-GCN) as an efficient 3D human pose forecasting model.
Our architecture extracts meaningful information from pose sequences, aggregates displacements and accelerations into the input model, and finally predicts the output displacements.
arXiv Detail & Related papers (2024-02-21T17:51:30Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Learning Cross-Scale Prediction for Efficient Neural Video Compression [30.051859347293856]
We present the first neural video that can compete with the latest coding standard H.266/VVC in terms of sRGB PSNR on UVG dataset for the low-latency mode.
We propose a novel cross-scale prediction module that achieves more effective motion compensation.
arXiv Detail & Related papers (2021-12-26T03:12:17Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - Confidence Adaptive Anytime Pixel-Level Recognition [86.75784498879354]
Anytime inference requires a model to make a progression of predictions which might be halted at any time.
We propose the first unified and end-to-end model approach for anytime pixel-level recognition.
arXiv Detail & Related papers (2021-04-01T20:01:57Z) - Retrieval Augmentation to Improve Robustness and Interpretability of
Deep Neural Networks [3.0410237490041805]
In this work, we actively exploit the training data to improve the robustness and interpretability of deep neural networks.
Specifically, the proposed approach uses the target of the nearest input example to initialize the memory state of an LSTM model or to guide attention mechanisms.
Results show the effectiveness of the proposed models for the two tasks, on the widely used Flickr8 and IMDB datasets.
arXiv Detail & Related papers (2021-02-25T17:38:31Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z) - Motion Segmentation using Frequency Domain Transformer Networks [29.998917158604694]
We propose a novel end-to-end learnable architecture that predicts the next frame by modeling foreground and background separately.
Our approach can outperform some widely used video prediction methods like Video Ladder Network and Predictive Gated Pyramids on synthetic data.
arXiv Detail & Related papers (2020-04-18T15:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.