論文の概要: Scalable Learning Paradigms for Data-Driven Wireless Communication
- arxiv url: http://arxiv.org/abs/2003.00474v1
- Date: Sun, 1 Mar 2020 12:13:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 12:55:57.544669
- Title: Scalable Learning Paradigms for Data-Driven Wireless Communication
- Title(参考訳): データ駆動無線通信のためのスケーラブル学習パラダイム
- Authors: Yue Xu, Feng Yin, Wenjun Xu, Chia-Han Lee, Jiaru Lin, Shuguang Cui
- Abstract要約: 我々は,スケーラブルなデータ駆動無線ネットワークの構築ブロックについて,体系的な議論を行うことを目指している。
一方、グローバルな視点から、スケーラブルなデータ駆動システムの先見的なアーキテクチャとコンピューティングフレームワークについて論じる。
一方,各ノードにおける学習アルゴリズムとモデル学習戦略を局所的な視点から検討する。
- 参考スコア(独自算出の注目度): 45.03425546213185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The marriage of wireless big data and machine learning techniques
revolutionizes the wireless system by the data-driven philosophy. However, the
ever exploding data volume and model complexity will limit centralized
solutions to learn and respond within a reasonable time. Therefore, scalability
becomes a critical issue to be solved. In this article, we aim to provide a
systematic discussion on the building blocks of scalable data-driven wireless
networks. On one hand, we discuss the forward-looking architecture and
computing framework of scalable data-driven systems from a global perspective.
On the other hand, we discuss the learning algorithms and model training
strategies performed at each individual node from a local perspective. We also
highlight several promising research directions in the context of scalable
data-driven wireless communications to inspire future research.
- Abstract(参考訳): ワイヤレスビッグデータと機械学習技術の融合は、データ駆動の哲学によってワイヤレスシステムに革命をもたらす。
しかし、爆発するデータ量とモデルの複雑さは、適切な時間内に学習と応答する集中型ソリューションを制限するだろう。
そのため、スケーラビリティは解決すべき重要な問題となる。
本稿では,スケーラブルなデータ駆動無線ネットワークの構築について,体系的な議論を行う。
一方、グローバルな視点から、スケーラブルなデータ駆動システムの先見的なアーキテクチャとコンピューティングフレームワークについて論じる。
一方,各ノードにおける学習アルゴリズムとモデル学習戦略について,局所的な視点から論じる。
また、スケーラブルなデータ駆動無線通信の文脈における有望な研究方向を強調し、将来の研究を刺激する。
関連論文リスト
- Learning Wireless Data Knowledge Graph for Green Intelligent Communications: Methodology and Experiments [36.82287751359216]
我々は,知識グラフ(KG)の概念をモバイルネットワークのインテリジェントな操作操作に統合した,広汎なマルチレベル(PML)ネイティブAIアーキテクチャを提案する。
我々は、無線通信ネットワークから収集された大規模で複雑なデータを特徴付け、様々なデータフィールド間の関係を分析する。
このアーキテクチャは、AIトレーニング、推論、検証プロセスを強化するだけでなく、通信ネットワークのリソースの浪費とオーバーヘッドを大幅に削減する。
論文 参考訳(メタデータ) (2024-04-16T07:55:34Z) - Coordination-free Decentralised Federated Learning on Complex Networks:
Overcoming Heterogeneity [2.6849848612544]
Federated Learning(FL)は、エッジコンピューティングシナリオで学習タスクを実行するためのフレームワークである。
本稿では,コミュニケーション効率のよい分散フェデレート学習(DFL)アルゴリズムを提案する。
我々のソリューションは、デバイスが直接隣人とのみ通信し、正確なモデルを訓練することを可能にする。
論文 参考訳(メタデータ) (2023-12-07T18:24:19Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Federated Learning in Unreliable and Resource-Constrained Cellular
Wireless Networks [35.80470886180477]
本稿では,セルラー無線ネットワークに適した連合学習アルゴリズムを提案する。
収束を証明し、収束率を最大化する最適なスケジューリングポリシーを提供します。
論文 参考訳(メタデータ) (2020-12-09T16:16:43Z) - Federated Edge Learning : Design Issues and Challenges [1.916348196696894]
Federated Learning(FL)は分散機械学習技術であり、各デバイスはそのローカルトレーニングデータに基づいて勾配を独立に計算することで学習モデルに寄与する。
FLをネットワークエッジに実装することは、システムとデータの不均一性とリソースの制約のために難しい。
本稿では、今後の研究方向性の指針として、データ認識スケジューリングのための一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-31T19:56:36Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Distributed Learning in the Non-Convex World: From Batch to Streaming
Data, and Beyond [73.03743482037378]
分散学習は、多くの人々が想定する、大規模に接続された世界の重要な方向となっている。
本稿では、スケーラブルな分散処理とリアルタイムデータ計算の4つの重要な要素について論じる。
実践的な問題や今後の研究についても論じる。
論文 参考訳(メタデータ) (2020-01-14T14:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。