Exploiting Ergonomic Priors in Human-to-Robot Task Transfer
- URL: http://arxiv.org/abs/2003.00544v1
- Date: Sun, 1 Mar 2020 18:30:57 GMT
- Title: Exploiting Ergonomic Priors in Human-to-Robot Task Transfer
- Authors: Jeevan Manavalan, Prabhakar Ray, Matthew Howard
- Abstract summary: A method based on programming by demonstration is proposed to learn null space policies from constrained motion data.
The effectiveness of the method has been demonstrated in a 3-link simulation and a real world experiment using a human subject as the demonstrator.
The approach is shown to outperform the current state-of-the-art approach in a simulated 3DoF robot manipulator control problem.
- Score: 3.60953887026184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been a booming shift in the development of
versatile, autonomous robots by introducing means to intuitively teach robots
task-oriented behaviour by demonstration. In this paper, a method based on
programming by demonstration is proposed to learn null space policies from
constrained motion data. The main advantage to using this is generalisation of
a task by retargeting a systems redundancy as well as the capability to fully
replace an entire system with another of varying link number and lengths while
still accurately repeating a task subject to the same constraints. The
effectiveness of the method has been demonstrated in a 3-link simulation and a
real world experiment using a human subject as the demonstrator and is verified
through task reproduction on a 7DoF physical robot. In simulation, the method
works accurately with even as little as five data points producing errors less
than 10^-14. The approach is shown to outperform the current state-of-the-art
approach in a simulated 3DoF robot manipulator control problem where motions
are reproduced using learnt constraints. Retargeting of a systems null space
component is also demonstrated in a task where controlling how redundancy is
resolved allows for obstacle avoidance. Finally, the approach is verified in a
real world experiment using demonstrations from a human subject where the
learnt task space trajectory is transferred onto a 7DoF physical robot of a
different embodiment.
Related papers
- Zero-Cost Whole-Body Teleoperation for Mobile Manipulation [8.71539730969424]
MoMa-Teleop is a novel teleoperation method that delegates the base motions to a reinforcement learning agent.
We demonstrate that our approach results in a significant reduction in task completion time across a variety of robots and tasks.
arXiv Detail & Related papers (2024-09-23T15:09:45Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
Current state-of-the-art action representations in robotics lack proper effect-driven learning of the robot's actions.
We propose an unsupervised algorithm to discretize a continuous motion space and generate "action prototypes"
We evaluate our method on a simulated stair-climbing reinforcement learning task.
arXiv Detail & Related papers (2024-04-03T13:28:52Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
We present a reinforcement learning based method for teaching a real world bipedal robot to perform movements directly from motion capture data.
Our method seamlessly transitions from training in a simulation environment to executing on a physical robot.
We demonstrate our method on an internally developed humanoid robot with movements ranging from a dynamic walk cycle to complex balancing and waving.
arXiv Detail & Related papers (2021-05-26T00:49:37Z) - Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single
Demonstration [8.57914821832517]
We introduce a simple new method for visual imitation learning, which allows a novel robot manipulation task to be learned from a single human demonstration.
Our method models imitation learning as a state estimation problem, with the state defined as the end-effector's pose.
At test time, the end-effector moves to the estimated state through a linear path, at which point the original demonstration's end-effector velocities are simply replayed.
arXiv Detail & Related papers (2021-05-13T16:36:55Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
One challenge of motion generation using robot learning from demonstration techniques is that human demonstrations follow a distribution with multiple modes for one task query.
Previous approaches fail to capture all modes or tend to average modes of the demonstrations and thus generate invalid trajectories.
We propose a motion generation model with extrapolation ability to overcome this problem.
arXiv Detail & Related papers (2021-02-24T09:07:52Z) - Low Dimensional State Representation Learning with Reward-shaped Priors [7.211095654886105]
We propose a method that aims at learning a mapping from the observations into a lower-dimensional state space.
This mapping is learned with unsupervised learning using loss functions shaped to incorporate prior knowledge of the environment and the task.
We test the method on several mobile robot navigation tasks in a simulation environment and also on a real robot.
arXiv Detail & Related papers (2020-07-29T13:00:39Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.