Low Dimensional State Representation Learning with Reward-shaped Priors
- URL: http://arxiv.org/abs/2007.16044v2
- Date: Thu, 7 Jan 2021 16:48:37 GMT
- Title: Low Dimensional State Representation Learning with Reward-shaped Priors
- Authors: Nicol\`o Botteghi, Ruben Obbink, Daan Geijs, Mannes Poel, Beril
Sirmacek, Christoph Brune, Abeje Mersha and Stefano Stramigioli
- Abstract summary: We propose a method that aims at learning a mapping from the observations into a lower-dimensional state space.
This mapping is learned with unsupervised learning using loss functions shaped to incorporate prior knowledge of the environment and the task.
We test the method on several mobile robot navigation tasks in a simulation environment and also on a real robot.
- Score: 7.211095654886105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning has been able to solve many complicated robotics tasks
without any need for feature engineering in an end-to-end fashion. However,
learning the optimal policy directly from the sensory inputs, i.e the
observations, often requires processing and storage of a huge amount of data.
In the context of robotics, the cost of data from real robotics hardware is
usually very high, thus solutions that achieve high sample-efficiency are
needed. We propose a method that aims at learning a mapping from the
observations into a lower-dimensional state space. This mapping is learned with
unsupervised learning using loss functions shaped to incorporate prior
knowledge of the environment and the task. Using the samples from the state
space, the optimal policy is quickly and efficiently learned. We test the
method on several mobile robot navigation tasks in a simulation environment and
also on a real robot.
Related papers
- Simulation-Aided Policy Tuning for Black-Box Robot Learning [47.83474891747279]
We present a novel black-box policy search algorithm focused on data-efficient policy improvements.
The algorithm learns directly on the robot and treats simulation as an additional information source to speed up the learning process.
We show fast and successful task learning on a robot manipulator with the aid of an imperfect simulator.
arXiv Detail & Related papers (2024-11-21T15:52:23Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly [55.41644538483948]
We present an industrial application case that uses sim2real transfer learning for point cloud data.
We provide insights on how to generate and process synthetic point cloud data.
A novel patch-based attention network is proposed additionally to tackle this problem.
arXiv Detail & Related papers (2023-01-12T14:00:37Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - Memory-based gaze prediction in deep imitation learning for robot
manipulation [2.857551605623957]
The proposed algorithm uses a Transformer-based self-attention architecture for the gaze estimation based on sequential data to implement memory.
The proposed method was evaluated with a real robot multi-object manipulation task that requires memory of the previous states.
arXiv Detail & Related papers (2022-02-10T07:30:08Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
Reinforcement learning algorithms have proven to be capable of solving complicated robotics tasks in an end-to-end fashion.
We propose a framework combining the learning of a low-dimensional state representation, from high-dimensional observations coming from the robot's raw sensory readings, with the learning of the optimal policy.
arXiv Detail & Related papers (2021-07-04T15:42:01Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.