Using Image Captions and Multitask Learning for Recommending Query
Reformulations
- URL: http://arxiv.org/abs/2003.00708v1
- Date: Mon, 2 Mar 2020 08:22:46 GMT
- Title: Using Image Captions and Multitask Learning for Recommending Query
Reformulations
- Authors: Gaurav Verma, Vishwa Vinay, Sahil Bansal, Shashank Oberoi, Makkunda
Sharma, Prakhar Gupta
- Abstract summary: We aim to enhance the query recommendation experience for a commercial image search engine.
Our proposed methodology incorporates current state-of-the-art practices from relevant literature.
- Score: 11.99358906295761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactive search sessions often contain multiple queries, where the user
submits a reformulated version of the previous query in response to the
original results. We aim to enhance the query recommendation experience for a
commercial image search engine. Our proposed methodology incorporates current
state-of-the-art practices from relevant literature -- the use of
generation-based sequence-to-sequence models that capture session context, and
a multitask architecture that simultaneously optimizes the ranking of results.
We extend this setup by driving the learning of such a model with captions of
clicked images as the target, instead of using the subsequent query within the
session. Since these captions tend to be linguistically richer, the
reformulation mechanism can be seen as assistance to construct more descriptive
queries. In addition, via the use of a pairwise loss for the secondary ranking
task, we show that the generated reformulations are more diverse.
Related papers
- Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - Adapting Dual-encoder Vision-language Models for Paraphrased Retrieval [55.90407811819347]
We consider the task of paraphrased text-to-image retrieval where a model aims to return similar results given a pair of paraphrased queries.
We train a dual-encoder model starting from a language model pretrained on a large text corpus.
Compared to public dual-encoder models such as CLIP and OpenCLIP, the model trained with our best adaptation strategy achieves a significantly higher ranking similarity for paraphrased queries.
arXiv Detail & Related papers (2024-05-06T06:30:17Z) - Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models [17.171715290673678]
We propose an interactive image retrieval system capable of refining queries based on user relevance feedback.
This system incorporates a vision language model (VLM) based image captioner to enhance the quality of text-based queries.
To evaluate our system, we curate a new dataset by adapting the MSR-VTT video retrieval dataset to the image retrieval task.
arXiv Detail & Related papers (2024-04-29T14:46:35Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQ requires a system to retrieve knowledge from a large corpus by integrating contents from both text and image queries.
We introduce a retriever model ReViz'' that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion.
We demonstrate superior performance in retrieval on two datasets under zero-shot settings.
arXiv Detail & Related papers (2023-06-01T08:04:12Z) - Progressive Learning for Image Retrieval with Hybrid-Modality Queries [48.79599320198615]
Image retrieval with hybrid-modality queries, also known as composing text and image for image retrieval (CTI-IR)
We decompose the CTI-IR task into a three-stage learning problem to progressively learn the complex knowledge for image retrieval with hybrid-modality queries.
Our proposed model significantly outperforms state-of-the-art methods in the mean of Recall@K by 24.9% and 9.5% on the Fashion-IQ and Shoes benchmark datasets respectively.
arXiv Detail & Related papers (2022-04-24T08:10:06Z) - Cross-Modal Retrieval Augmentation for Multi-Modal Classification [61.5253261560224]
We explore the use of unstructured external knowledge sources of images and their corresponding captions for improving visual question answering.
First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement on image-caption retrieval.
Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines.
arXiv Detail & Related papers (2021-04-16T13:27:45Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers.
We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC.
arXiv Detail & Related papers (2020-05-24T11:37:22Z) - MLR: A Two-stage Conversational Query Rewriting Model with Multi-task
Learning [16.88648782206587]
We propose the conversational query rewriting model - MLR, which is a Multi-task model on sequence Labeling and query Rewriting.
MLR reformulates the multi-turn conversational queries into a single turn query, which conveys the true intention of users concisely.
To train our model, we construct a new Chinese query rewriting dataset and conduct experiments on it.
arXiv Detail & Related papers (2020-04-13T08:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.