Spatiotemporal Learning of Multivehicle Interaction Patterns in
Lane-Change Scenarios
- URL: http://arxiv.org/abs/2003.00759v2
- Date: Sat, 5 Sep 2020 09:48:09 GMT
- Title: Spatiotemporal Learning of Multivehicle Interaction Patterns in
Lane-Change Scenarios
- Authors: Chengyuan Zhang, Jiacheng Zhu, Wenshuo Wang, Junqiang Xi
- Abstract summary: Interpretation of common-yet-challenging interaction scenarios can benefit well-founded decisions for autonomous vehicles.
This paper describes a Bayesian nonparametric approach that leverages continuous (i.e., Gaussian processes) and discrete (i.e., Dirichlet processes) processes.
Our proposed approach sheds light on efficiently analyzing other kinds of multi-agent interactions, such as vehiclepedestrian interactions.
- Score: 11.893098067272463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretation of common-yet-challenging interaction scenarios can benefit
well-founded decisions for autonomous vehicles. Previous research achieved this
using their prior knowledge of specific scenarios with predefined models,
limiting their adaptive capabilities. This paper describes a Bayesian
nonparametric approach that leverages continuous (i.e., Gaussian processes) and
discrete (i.e., Dirichlet processes) stochastic processes to reveal underlying
interaction patterns of the ego vehicle with other nearby vehicles. Our model
relaxes dependency on the number of surrounding vehicles by developing an
acceleration-sensitive velocity field based on Gaussian processes. The
experiment results demonstrate that the velocity field can represent the
spatial interactions between the ego vehicle and its surroundings. Then, a
discrete Bayesian nonparametric model, integrating Dirichlet processes and
hidden Markov models, is developed to learn the interaction patterns over the
temporal space by segmenting and clustering the sequential interaction data
into interpretable granular patterns automatically. We then evaluate our
approach in the highway lane-change scenarios using the highD dataset collected
from real-world settings. Results demonstrate that our proposed Bayesian
nonparametric approach provides an insight into the complicated lane-change
interactions of the ego vehicle with multiple surrounding traffic participants
based on the interpretable interaction patterns and their transition properties
in temporal relationships. Our proposed approach sheds light on efficiently
analyzing other kinds of multi-agent interactions, such as vehicle-pedestrian
interactions. View the demos via https://youtu.be/z_vf9UHtdAM.
Related papers
- FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
This study introduces a scaled noise conditional diffusion model for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving the accuracy and plausibility of predicted trajectories.
Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.
arXiv Detail & Related papers (2024-11-23T23:13:45Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - A Hierarchical Hybrid Learning Framework for Multi-agent Trajectory
Prediction [4.181632607997678]
We propose a hierarchical hybrid framework of deep learning (DL) and reinforcement learning (RL) for multi-agent trajectory prediction.
In the DL stage, the traffic scene is divided into multiple intermediate-scale heterogenous graphs based on which Transformer-style GNNs are adopted to encode heterogenous interactions.
In the RL stage, we divide the traffic scene into local sub-scenes utilizing the key future points predicted in the DL stage.
arXiv Detail & Related papers (2023-03-22T02:47:42Z) - Domain Knowledge Driven Pseudo Labels for Interpretable Goal-Conditioned
Interactive Trajectory Prediction [29.701029725302586]
We study the joint trajectory prediction problem with the goal-conditioned framework.
We introduce a conditional-variational-autoencoder-based (CVAE) model to explicitly encode different interaction modes into the latent space.
We propose a novel approach to avoid KL vanishing and induce an interpretable interactive latent space with pseudo labels.
arXiv Detail & Related papers (2022-03-28T21:41:21Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
We develop a model for learning heterogeneous and dynamic patterns of velocity field data.
We show the effectiveness of our techniques to the NGSIM dataset of complex multi-vehicle interactions.
arXiv Detail & Related papers (2021-02-15T17:45:46Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
Hand pointing and eye gaze have been extensively investigated in automotive applications for object selection and referencing.
Existing outside-the-vehicle referencing methods focus on a static situation, whereas the situation in a moving vehicle is highly dynamic and subject to safety-critical constraints.
We investigate the specific characteristics of each modality and the interaction between them when used in the task of referencing outside objects.
arXiv Detail & Related papers (2020-09-23T14:56:19Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
Trajectory prediction in urban mixedtraffic zones is critical for many intelligent transportation systems.
We propose an approach named Multi-Context Network (MCENET) that is trained by encoding both past and future scene context.
In inference time, we combine the past context and motion information of the target agent with samplings of the latent variables to predict multiple realistic trajectories.
arXiv Detail & Related papers (2020-02-14T11:04:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.