Domain Knowledge Driven Pseudo Labels for Interpretable Goal-Conditioned
Interactive Trajectory Prediction
- URL: http://arxiv.org/abs/2203.15112v1
- Date: Mon, 28 Mar 2022 21:41:21 GMT
- Title: Domain Knowledge Driven Pseudo Labels for Interpretable Goal-Conditioned
Interactive Trajectory Prediction
- Authors: Lingfeng Sun, Chen Tang, Yaru Niu, Enna Sachdeva, Chiho Cho, Teruhisa
Misu, Masayoshi Tomizuka, Wei Zhan
- Abstract summary: We study the joint trajectory prediction problem with the goal-conditioned framework.
We introduce a conditional-variational-autoencoder-based (CVAE) model to explicitly encode different interaction modes into the latent space.
We propose a novel approach to avoid KL vanishing and induce an interpretable interactive latent space with pseudo labels.
- Score: 29.701029725302586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Motion forecasting in highly interactive scenarios is a challenging problem
in autonomous driving. In such scenarios, we need to accurately predict the
joint behavior of interacting agents to ensure the safe and efficient
navigation of autonomous vehicles. Recently, goal-conditioned methods have
gained increasing attention due to their advantage in performance and their
ability to capture the multimodality in trajectory distribution. In this work,
we study the joint trajectory prediction problem with the goal-conditioned
framework. In particular, we introduce a
conditional-variational-autoencoder-based (CVAE) model to explicitly encode
different interaction modes into the latent space. However, we discover that
the vanilla model suffers from posterior collapse and cannot induce an
informative latent space as desired. To address these issues, we propose a
novel approach to avoid KL vanishing and induce an interpretable interactive
latent space with pseudo labels. The pseudo labels allow us to incorporate
arbitrary domain knowledge on interaction. We motivate the proposed method
using an illustrative toy example. In addition, we validate our framework on
the Waymo Open Motion Dataset with both quantitative and qualitative
evaluations.
Related papers
- Collision Probability Distribution Estimation via Temporal Difference Learning [0.46085106405479537]
We introduce CollisionPro, a pioneering framework designed to estimate cumulative collision probability distributions.
We formulate our framework within the context of reinforcement learning to pave the way for safety-aware agents.
A comprehensive examination of our framework is conducted using a realistic autonomous driving simulator.
arXiv Detail & Related papers (2024-07-29T13:32:42Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
Accurately predicting the possible behaviors of traffic participants is an essential capability for autonomous vehicles.
We propose a novel generic representation for various driving environments by taking the advantage of semantics and domain knowledge.
arXiv Detail & Related papers (2020-04-07T00:34:36Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Spatiotemporal Learning of Multivehicle Interaction Patterns in
Lane-Change Scenarios [11.893098067272463]
Interpretation of common-yet-challenging interaction scenarios can benefit well-founded decisions for autonomous vehicles.
This paper describes a Bayesian nonparametric approach that leverages continuous (i.e., Gaussian processes) and discrete (i.e., Dirichlet processes) processes.
Our proposed approach sheds light on efficiently analyzing other kinds of multi-agent interactions, such as vehiclepedestrian interactions.
arXiv Detail & Related papers (2020-03-02T10:59:35Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.