論文の概要: FPGA Implementation of Minimum Mean Brightness Error Bi-Histogram
Equalization
- arxiv url: http://arxiv.org/abs/2003.00840v1
- Date: Wed, 12 Feb 2020 06:42:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 20:40:39.132784
- Title: FPGA Implementation of Minimum Mean Brightness Error Bi-Histogram
Equalization
- Title(参考訳): 最小平均明度誤差双ヒストグラム等化のFPGAによる実装
- Authors: Abhishek Saroha, Avichal Rakesh, Rajiv Kumar Tripathi
- Abstract要約: 平均輝度を維持しながらコントラストを高めるため,バイヒストグラム等化法 (BBHE) が提案された。
平均輝度が主な関心事である場合、最小平均誤差双ヒストグラム等化(MMBEBHE)が最適である。
FPGA上でのMBEBHEの実装について述べる。
- 参考スコア(独自算出の注目度): 1.6114012813668934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Histogram Equalization (HE) is a popular method for contrast enhancement.
Generally, mean brightness is not conserved in Histogram Equalization.
Initially, Bi-Histogram Equalization (BBHE) was proposed to enhance contrast
while maintaining a the mean brightness. However, when mean brightness is
primary concern, Minimum Mean Brightness Error Bi-Histogram Equalization
(MMBEBHE) is the best technique. There are several implementations of Histogram
Equalization on FPGA, however to our knowledge MMBEBHE has not been implemented
on FPGAs before. Therefore, we present an implementation of MMBEBHE on FPGA.
- Abstract(参考訳): ヒストグラム等化(HE)はコントラスト増強の一般的な方法である。
一般に、平均輝度はヒストグラム等化では保存されない。
当初は、平均輝度を維持しながらコントラストを高めるために、 Bi-Histogram Equalization (BBHE) が提案された。
しかし、平均輝度が主な関心事である場合、最小平均明度誤差ビヒストグラム等化(MMBEBHE)が最適である。
FPGA上でのヒストグラム等化の実装はいくつかあるが、MMBEBHEはFPGA上では実装されていない。
そこで,FPGA上でのMBEBHEの実装を提案する。
関連論文リスト
- Rethinking Graph Masked Autoencoders through Alignment and Uniformity [26.86368034133612]
グラフ上の自己教師付き学習は、対照的で生成的な方法に分岐することができる。
グラフマスク付きオートエンコーダ(GraphMAE)の最近の出現は、生成法の背後にあるモーメントを回復させる。
論文 参考訳(メタデータ) (2024-02-11T15:21:08Z) - Self-Sufficient Framework for Continuous Sign Language Recognition [75.60327502570242]
この作業の目標は、継続的手話認識のための自己充足型のフレームワークを開発することです。
これには、理解のための手、顔、口などの複雑なマルチスケール機能、フレームレベルのアノテーションの欠如が含まれる。
ネットワークやアノテーションを必要とせずに手動と非手動の両方の機能を抽出するDivide and Focus Convolution (DFConv)を提案する。
DPLRは、基底真理グロスシーケンスラベルと予測シーケンスを組み合わせることにより、非スパイクフレームレベルの擬似ラベルを伝搬する。
論文 参考訳(メタデータ) (2023-03-21T11:42:57Z) - Anonymized Histograms in Intermediate Privacy Models [54.32252900997422]
我々は,シャッフルDPおよびパンプライベートモデルにおいて,$tildeO_varepsilon(sqrtn)$とほぼ一致する誤差を保証するアルゴリズムを提案する。
我々のアルゴリズムは非常に単純で、離散的なラプラスノイズヒストグラムを後処理するだけである。
論文 参考訳(メタデータ) (2022-10-27T05:11:00Z) - Reflectance-Oriented Probabilistic Equalization for Image Enhancement [28.180598784444605]
本稿では,新しい2次元ヒストグラム等化手法を提案する。
強度発生と共起が互いに依存していると仮定し、強度発生の分布を導出する。
低照度画像の明るさを十分に向上すると同時に、通常の照度画像の過度の強調を回避できる。
論文 参考訳(メタデータ) (2022-09-14T04:20:06Z) - Efficient and Flexible Sublabel-Accurate Energy Minimization [62.50191141358778]
データと滑らかさの項からなるエネルギー関数のクラスを最小化する問題に対処する。
既存の連続最適化手法は、サブラベル精度の高い解を見つけることができるが、大きなラベル空間では効率が良くない。
本稿では,連続モデルと離散モデルの両方の最適特性を利用する効率的なサブラベル精度手法を提案する。
論文 参考訳(メタデータ) (2022-06-20T06:58:55Z) - Sub-Image Histogram Equalization using Coot Optimization Algorithm for
Segmentation and Parameter Selection [0.0]
平均および分散に基づくサブイメージヒストグラム等化(MVSIHE)アルゴリズムは,これらのコントラスト強化手法の1つである。
本研究では,直近の最適化アルゴリズム,すなわちcoot Optimization algorithm(COA)を用いて,MVSIHEアルゴリズムの適切なパラメータを選択する。
その結果, バイオメディカル画像処理の分野では, 提案手法が有効であることが示唆された。
論文 参考訳(メタデータ) (2022-05-31T06:51:45Z) - Distribution-aware Margin Calibration for Semantic Segmentation in
Images [78.65312390695038]
ジャカードインデックス(ジャカードインデックス、Intersection-over-Union、IoU)は、画像セマンティックセグメンテーションにおいて最も重要な評価指標の一つである。
IoUスコアの直接最適化は非常に困難である。
学習目的として直接使用できるマージン校正法を提案し,データ分散に対するIoUの一般化を改良する。
論文 参考訳(メタデータ) (2021-12-21T22:38:25Z) - Gradient Boosted Binary Histogram Ensemble for Large-scale Regression [60.16351608335641]
本研究では,2値ヒストグラム分割とアンサンブル学習に基づくテキストグラディエント2値ヒストグラムアンサンブル(GBBHE)と呼ばれる大規模回帰問題に対する勾配向上アルゴリズムを提案する。
実験では, 勾配向上回帰木 (GBRT) などの他の最先端アルゴリズムと比較して, GBBHEアルゴリズムは大規模データセット上での実行時間が少なく, 有望な性能を示す。
論文 参考訳(メタデータ) (2021-06-03T17:05:40Z) - Tone Mapping Based on Multi-scale Histogram Synthesis [6.6399785438250705]
本稿では,低ダイナミックレンジ(LDR)デバイスにワイドダイナミックレンジ(WDR)画像を表示できる新しいトーンマッピングアルゴリズムを提案する。
提案アルゴリズムは,視覚系の対数応答と局所適応特性を主目的とする。
実験結果から,提案アルゴリズムは高輝度,良コントラスト,魅力的な画像を生成することができることがわかった。
論文 参考訳(メタデータ) (2021-01-31T08:11:48Z) - Image Enhancement using Fuzzy Intensity Measure and Adaptive Clipping
Histogram Equalization [21.963436654053226]
ファジィ強度測定と適応的クリッピングヒストグラム等化(FIMHE)を提案する。
バークレーデータベースとCVF-UGR-Imageデータベースの実験では、FIMHEが最先端のヒストグラム等化ベースの方法よりも優れていることが示されています。
論文 参考訳(メタデータ) (2021-01-15T00:59:55Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
双線形プールは細粒度視覚認識(FGVC)において大きな成功を収める
近年,行列パワー正規化は双線形特徴量において2次情報を安定化させることができることが示されている。
両線形表現を同時に正規化できる効率的な多目的行列正規化法(MOMN)を提案する。
論文 参考訳(メタデータ) (2020-03-30T08:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。