論文の概要: Sub-Image Histogram Equalization using Coot Optimization Algorithm for
Segmentation and Parameter Selection
- arxiv url: http://arxiv.org/abs/2205.15565v1
- Date: Tue, 31 May 2022 06:51:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 14:47:12.524637
- Title: Sub-Image Histogram Equalization using Coot Optimization Algorithm for
Segmentation and Parameter Selection
- Title(参考訳): coot最適化アルゴリズムによるセグメンテーションとパラメータ選択のためのサブイメージヒストグラム等化
- Authors: Emre Can Kuran, Umut Kuran and Mehmet Bilal Er
- Abstract要約: 平均および分散に基づくサブイメージヒストグラム等化(MVSIHE)アルゴリズムは,これらのコントラスト強化手法の1つである。
本研究では,直近の最適化アルゴリズム,すなわちcoot Optimization algorithm(COA)を用いて,MVSIHEアルゴリズムの適切なパラメータを選択する。
その結果, バイオメディカル画像処理の分野では, 提案手法が有効であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrast enhancement is very important in terms of assessing images in an
objective way. Contrast enhancement is also significant for various algorithms
including supervised and unsupervised algorithms for accurate classification of
samples. Some contrast enhancement algorithms solve this problem by addressing
the low contrast issue. Mean and variance based sub-image histogram
equalization (MVSIHE) algorithm is one of these contrast enhancements methods
proposed in the literature. It has different parameters which need to be tuned
in order to achieve optimum results. With this motivation, in this study, we
employed one of the most recent optimization algorithms, namely, coot
optimization algorithm (COA) for selecting appropriate parameters for the
MVSIHE algorithm. Blind/referenceless image spatial quality evaluator (BRISQUE)
and natural image quality evaluator (NIQE) metrics are used for evaluating
fitness of the coot swarm population. The results show that the proposed method
can be used in the field of biomedical image processing.
- Abstract(参考訳): コントラスト向上は、客観的な画像評価において非常に重要である。
コントラストの強化は、サンプルの正確な分類のための教師付きおよび教師なしのアルゴリズムを含む様々なアルゴリズムにも重要である。
いくつかのコントラスト拡張アルゴリズムは、低コントラスト問題に対処することでこの問題を解決する。
平均および分散に基づくサブイメージヒストグラム等化(MVSIHE)アルゴリズムは,これらのコントラスト強化手法の1つである。
最適な結果を得るためには、異なるパラメータをチューニングする必要がある。
そこで本研究では,直近の最適化アルゴリズムであるcoot Optimization algorithm(COA)を用いて,MVSIHEアルゴリズムの適切なパラメータを選択する。
ブラインド/レファレンス画像空間品質評価器 (brisque) と自然画像品質評価器 (niqe) は, 群れの適合性を評価するために用いられる。
その結果, バイオメディカル画像処理の分野では, 提案手法が有効であることが示唆された。
関連論文リスト
- Machine learning based biomedical image processing for echocardiographic
images [0.0]
提案手法では,K-Nearest Neighbor (KNN) アルゴリズムを用いて医用画像のセグメンテーションを行う。
トレーニングされたニューラルネットワークは、エコー画像のグループで正常にテストされている。
論文 参考訳(メタデータ) (2023-03-16T06:23:43Z) - Optimizing CT Scan Geometries With and Without Gradients [7.788823739816626]
勾配に基づく最適化アルゴリズムが、勾配のないアルゴリズムの代替となる可能性が示されている。
勾配に基づくアルゴリズムは、捕捉範囲と自由パラメータの数に対するロバスト性の観点から、勾配のないアルゴリズムに匹敵する一方で、かなり高速に収束する。
論文 参考訳(メタデータ) (2023-02-13T10:44:41Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Otsu based Differential Evolution Method for Image Segmentation [0.0]
本稿では,衛星画像分割のためのOtsuに基づく微分進化法を提案する。
人工ビーコロニー(MABC)、人工ビーコロニー(ABC)、遺伝的アルゴリズム(GA)、粒子群最適化(PSO)の4つの方法と比較される。
論文 参考訳(メタデータ) (2022-10-18T17:21:24Z) - Provable Stochastic Optimization for Global Contrastive Learning: Small
Batch Does Not Harm Performance [53.49803579981569]
各正の対と全ての負の対をアンカーポイントで対比する、コントラスト学習のグローバルな目的を考える。
SimCLRのような既存のメソッドは、十分な結果を得るために大きなバッチサイズを必要とする。
本稿では,SogCLRという表現のグローバルコントラスト学習を解くためのメモリ効率の最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-24T22:16:53Z) - Towards a Unified Approach to Homography Estimation Using Image Features
and Pixel Intensities [0.0]
ホモグラフィ行列は、様々な視覚に基づくロボットタスクにおいて重要な要素である。
伝統的に、ホモグラフィー推定アルゴリズムは特徴ベースまたは強度ベースに分類される。
本稿では,2つのクラスを1つの非線形最適化手順に統合するハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2022-02-20T02:47:05Z) - Segmentation of Brain MRI using an Altruistic Harris Hawks' Optimization
algorithm [29.895517914678816]
脳磁気共鳴画像(MRI)の効率的なセグメンテーションは、放射線学者にとって大きな関心事である。
Thresholdingは、画像のヒストグラムを使用して、異なるピクセルの同質なグループを異なるクラスにラベル付けする、セグメンテーションの一般的な方法である。
本稿では,進化的メタヒューリスティックを用いたマルチレベルしきい値設定を行う。
論文 参考訳(メタデータ) (2021-09-17T17:51:34Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
深層ニューラルネットワークに展開する反復アルゴリズムを用いて,学習したブロックスパース最適化手法を提案する。
本稿では、正規化パラメータの選択を学ぶことができる学習ブロック反復収縮しきい値アルゴリズムを使用することの利点を示す。
論文 参考訳(メタデータ) (2020-12-07T09:27:16Z) - Discovering Representations for Black-box Optimization [73.59962178534361]
ブラックボックス最適化符号化は手作業で行うのではなく,自動的に学習可能であることを示す。
学習された表現は、標準的なMAP-Elitesよりも桁違いに少ない評価で高次元の問題を解くことができることを示す。
論文 参考訳(メタデータ) (2020-03-09T20:06:20Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。