論文の概要: Deep Learning on Radar Centric 3D Object Detection
- arxiv url: http://arxiv.org/abs/2003.00851v1
- Date: Thu, 27 Feb 2020 10:16:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 09:26:11.110191
- Title: Deep Learning on Radar Centric 3D Object Detection
- Title(参考訳): レーダー3次元物体検出の深層学習
- Authors: Seungjun Lee
- Abstract要約: レーダーのみを用いた3次元物体検出に深層学習手法を導入する。
レーダラベル付きデータの欠如を克服するために,豊富なLiDARデータを利用する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 4.822598110892847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even though many existing 3D object detection algorithms rely mostly on
camera and LiDAR, camera and LiDAR are prone to be affected by harsh weather
and lighting conditions. On the other hand, radar is resistant to such
conditions. However, research has found only recently to apply deep neural
networks on radar data. In this paper, we introduce a deep learning approach to
3D object detection with radar only. To the best of our knowledge, we are the
first ones to demonstrate a deep learning-based 3D object detection model with
radar only that was trained on the public radar dataset. To overcome the lack
of radar labeled data, we propose a novel way of making use of abundant LiDAR
data by transforming it into radar-like point cloud data and aggressive radar
augmentation techniques.
- Abstract(参考訳): 既存の3Dオブジェクト検出アルゴリズムの多くはカメラとLiDARに依存しているが、カメラとLiDARは厳しい天候や照明条件の影響を受けやすい。
一方、レーダーはそのような条件に耐性がある。
しかし、最近の研究でレーダーデータにディープニューラルネットワークを適用することが判明した。
本稿では,レーダーのみを用いた3次元物体検出のための深層学習手法を提案する。
私たちの知る限りでは、私たちは、公開レーダデータセットでトレーニングされたレーダーのみを用いたディープラーニングベースの3Dオブジェクト検出モデルを初めてデモしました。
レーダラベル付きデータの欠如を克服するために,レーダライクな点雲データとアグレッシブなレーダ拡張技術に変換することで,豊富なLiDARデータを利用する新しい手法を提案する。
関連論文リスト
- RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
暗い照明や悪天候はカメラの性能を低下させる。
レーダーは騒音と位置のあいまいさに悩まされる。
本稿では,BEVの頑健な物体検出モデルであるRobuRCDetを提案する。
論文 参考訳(メタデータ) (2025-02-18T17:17:38Z) - TransRAD: Retentive Vision Transformer for Enhanced Radar Object Detection [6.163747364795787]
本稿では,新しい3次元レーダ物体検出モデルであるTransRADを提案する。
本研究では、ディープレーダオブジェクト検出における重複境界ボックスの共通問題を軽減するために、位置認識型NMSを提案する。
その結果,TransRADは2次元および3次元のレーダ検出タスクにおいて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2025-01-29T20:21:41Z) - RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
本稿では,柱型物体検出ネットワークRadarPillarsを提案する。
放射速度データを分解することにより、RadarPillarsは、View-of-Delftデータセットの最先端検出結果を大幅に上回る。
これはパラメータ数を大幅に削減し、既存のメソッドを効率面で上回り、エッジデバイス上でのリアルタイムパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-08-09T12:13:38Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - K-Radar: 4D Radar Object Detection for Autonomous Driving in Various
Weather Conditions [9.705678194028895]
KAIST-Radarは、新しい大規模オブジェクト検出データセットとベンチマークである。
4次元レーダーテンソル(4DRT)データの35Kフレームを含み、ドップラー、レンジ、方位、標高の寸法に沿って電力の測定を行う。
我々は、慎重に校正された高分解能ライダー、サラウンドステレオカメラ、RTK-GPSから補助的な測定を行う。
論文 参考訳(メタデータ) (2022-06-16T13:39:21Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z) - Probabilistic Oriented Object Detection in Automotive Radar [8.281391209717103]
本稿では,レーダー物体検出のためのディープラーニングに基づくアルゴリズムを提案する。
我々は102544フレームの生レーダと同期LiDARデータを備えた新しいマルチモーダルデータセットを作成しました。
我々の最高性能レーダ検出モデルは、指向性IoU0.3で77.28%APを達成した。
論文 参考訳(メタデータ) (2020-04-11T05:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。