Distributed Cooperative Decision Making in Multi-agent Multi-armed
Bandits
- URL: http://arxiv.org/abs/2003.01312v2
- Date: Tue, 11 Aug 2020 19:54:20 GMT
- Title: Distributed Cooperative Decision Making in Multi-agent Multi-armed
Bandits
- Authors: Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard
- Abstract summary: We study a distributed decision-making problem in which multiple agents face the same bandit (MAB)
We design a dynamic, consensus-based, distributed estimation algorithm for cooperative estimation of mean rewards at each arm.
We show that both algorithms achieve group performance close to the performance of a central fusion center.
- Score: 6.437761597996503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a distributed decision-making problem in which multiple agents face
the same multi-armed bandit (MAB), and each agent makes sequential choices
among arms to maximize its own individual reward. The agents cooperate by
sharing their estimates over a fixed communication graph. We consider an
unconstrained reward model in which two or more agents can choose the same arm
and collect independent rewards. And we consider a constrained reward model in
which agents that choose the same arm at the same time receive no reward. We
design a dynamic, consensus-based, distributed estimation algorithm for
cooperative estimation of mean rewards at each arm. We leverage the estimates
from this algorithm to develop two distributed algorithms: coop-UCB2 and
coop-UCB2-selective-learning, for the unconstrained and constrained reward
models, respectively. We show that both algorithms achieve group performance
close to the performance of a centralized fusion center. Further, we
investigate the influence of the communication graph structure on performance.
We propose a novel graph explore-exploit index that predicts the relative
performance of groups in terms of the communication graph, and we propose a
novel nodal explore-exploit centrality index that predicts the relative
performance of agents in terms of the agent locations in the communication
graph.
Related papers
- Multi-Agent Best Arm Identification in Stochastic Linear Bandits [0.7673339435080443]
We study the problem of collaborative best-arm identification in linear bandits under a fixed-budget scenario.
In our learning model, we consider multiple agents connected through a star network or a generic network, interacting with a linear bandit instance in parallel.
We devise the algorithms MaLinBAI-Star and MaLinBAI-Gen for star networks and generic networks respectively.
arXiv Detail & Related papers (2024-11-20T20:09:44Z) - Scalable Decentralized Algorithms for Online Personalized Mean Estimation [12.002609934938224]
This study focuses on a simplified version of the overarching problem, where each agent collects samples from a real-valued distribution over time to estimate its mean.
We introduce two collaborative mean estimation algorithms: one draws inspiration from belief propagation, while the other employs a consensus-based approach.
arXiv Detail & Related papers (2024-02-20T08:30:46Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
Multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a reward.
We consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a and possibly unknown policy.
We propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner.
arXiv Detail & Related papers (2023-08-29T18:18:21Z) - Distributed Consensus Algorithm for Decision-Making in Multi-agent
Multi-armed Bandit [7.708904950194129]
We study a structured multi-agent multi-armed bandit (MAMAB) problem in a dynamic environment.
A graph reflects the information-sharing structure among agents, and the arms' reward distributions are piecewise-stationary with several unknown change points.
The goal is to develop a decision-making policy for the agents that minimizes the regret, which is the expected total loss of not playing the optimal arm at each time step.
arXiv Detail & Related papers (2023-06-09T16:10:26Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Federated Learning for Heterogeneous Bandits with Unobserved Contexts [0.0]
We study the problem of federated multi-arm contextual bandits with unknown contexts.
We propose an elimination-based algorithm and prove the regret bound for linearly parametrized reward functions.
arXiv Detail & Related papers (2023-03-29T22:06:24Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
We propose a novel recommender system that aligns with agents' incentives while achieving myopically optimal performance.
Our framework models this incentive-aware system as a multi-agent bandit problem in two-sided markets.
Both algorithms satisfy an ex-post fairness criterion, which protects agents from over-exploitation.
arXiv Detail & Related papers (2022-11-23T22:20:12Z) - Distributed Stochastic Bandit Learning with Context Distributions [0.0]
We study the problem of distributed multi-arm contextual bandit with unknown contexts.
In our model, an adversary chooses a distribution on the set of possible contexts and the agents observe only the context distribution and the exact context is unknown to the agents.
Our goal is to develop a distributed algorithm that selects a sequence of optimal actions to maximize the cumulative reward.
arXiv Detail & Related papers (2022-07-28T22:00:11Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
We propose an adaptive training algorithm to develop effective collaboration between agents with ToM.
We evaluate our algorithms with two games, where our algorithm surpasses all previous decentralized execution algorithms without modeling ToM.
arXiv Detail & Related papers (2021-09-30T23:28:00Z) - Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit
Feedback [51.21673420940346]
Combinatorial bandits generalize multi-armed bandits, where the agent chooses sets of arms and observes a noisy reward for each arm contained in the chosen set.
We focus on the pure-exploration problem of identifying the best arm with fixed confidence, as well as a more general setting, where the structure of the answer set differs from the one of the action set.
Based on a projection-free online learning algorithm for finite polytopes, it is the first computationally efficient algorithm which is convexally optimal and has competitive empirical performance.
arXiv Detail & Related papers (2021-01-21T10:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.